

2023/TDC(CBCS)/EVEN/SEM/ STSHCC-602T/276

TDC (CBCS) Even Semester Exam., 2023

STATISTICS

(Honours)

(6th Semester)

Course No.: STSHCC-602T

(Multivariate Analysis and Non-parametric Tests)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: $2\times10=20$

- 1. State the assumptions of deriving bivariate normal (BVN) distribution.
- **2.** If X_1 and X_2 are standard normal variates with correlation coefficient ρ between X_1 and X_2 , then show that the correlation coefficient between X_1^2 and X_2^2 is ρ^2 .

J23/791

(Turn Over)

- 3. If $(X, Y) \sim BVN (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then show that the linear combination of X and Y, i.e., aX + bY is a normal variate.
- **4.** If $X \in \mathbb{R}$ be a multivariate normal vector, then define the variance-covariance matrix of X.
- 5. Define cumulative distribution function of a discrete and continuous multivariate random variable.
- **6.** Consider the following data matrix (X):

$$X = \begin{bmatrix} 9 & 51 \\ 1 & 32 \end{bmatrix}$$

Let $C = (-1 \ 2)'$. Evaluate the sample mean and variance of C'X.

- 7. Define multivariate normal distribution.
- 8. If $X \sim N_p (\underline{\mu}, \Sigma)$, then prove that $\underbrace{Z} = D\underbrace{X} \sim N_q(D\underbrace{\mu}_{}, D\Sigma D')$

where D is any $q \times p$ matrix of rank $q \leq p$.

- 9. Define partial correlation coefficient and multiple correlation coefficient.
- 10. What is sequential sampling inspection plan?

- sequential 11. What is OC function of probability ratio test (SPRT)?
- 12. Make comparative statement on single, double and sequential sampling.
- tests Why are non-parametric distribution-free tests?
- State the assumptions associated with nonparametric tests.
- 15. Define the term 'Run'. State the assumptions of Run-test.

SECTION-B

Answer any five of the following questions:

- 16. Define bivariate normal distribution. Obtain m.g.f. of bivariate normal distribution with parameters μ_1 , μ_2 , σ_1^2 , σ_2^2 and ρ .
- If $(X, Y) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, then obtain the conditional distribution of Y given X = x and of X given Y = y.

J23/791

If $(X, Y) \sim BVN(0, 0, 1, 1, \rho)$, then obtain the line of regression of Y on X.

(Turn Over)

2

(Continued)

J23/791

(4)

18. Define multinomial distribution. If $X_1, X_2, ..., X_k$ are k-independent Poisson variates with parameters $\lambda_1, \lambda_2, ..., \lambda_k$ respectively, then prove that the conditional distribution

$$P(X_1 \cap X_2 \cap \cdots \cap X_k \mid X)$$

where $X = X_1 + X_2 + \cdots + X_k$ is fixed, is multinomial. 2+4=6

19. (a) Let $X = (X_1, X_2, \dots, X_p)'$ be a vector of random variable. Define $Y_1 = X_1$, $Y_i = X_i - X_{i-1}$, $i = 2, 3, \dots$, p. If Y_i 's are mutually independent, each with variance σ^2 , then prove that

record of the hope the common property of the same

$$\operatorname{tr}(\Sigma) = \frac{\rho(\rho+1)}{2} \cdot \sigma^2$$

where Σ is the variance-covariance matrix.

- (b) Define marginal distribution and conditional distribution of a p variate random variable.
- **20.** (a) Obtain characteristic function of a p variate normal distribution $X \sim N_p(\mu, \Sigma)$.
 - (b) If $X \sim N(0, \Sigma)$, then prove that $X'\Sigma^{-1}X$ follows χ^2 -distribution with 3 degrees of freedom.

J23/791

(Continued)

2

2

(5)

21. (a) Show that

$$R_{1\cdot 23}^2 \cdots n = 1 - \frac{w}{w_{11}}$$

where the symbols have their usual notations.

(b) Given that

$$1 - R_{1 \cdot 23}^2 = (1 - r_{12}^2) (1 - r_{13 \cdot 2}^2)$$

Deduce that $R_{1\cdot 23} \ge r_{12}$ and $R_{1\cdot 23}^2 = r_{12}^2 + r_{13}^2$, if $r_{23} = 0$.

2

6

6

6

6

- **22.** Describe the sequential procedure for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$, where θ is the parameter of the Poisson distribution. Also obtain the ASN and OC functions.
- 23. Let X has the distribution

$$f(x, \theta) = \theta^{x} (1 - \theta)^{1 - x}; x = 0, 1$$

 $0 < \theta < 1$

for testing $H_0: \theta = \theta_0$, against $H_1: \theta = \theta_1$. Construct SPRT and obtain its OC function.

- 24. Explain Kolmogorov-Smirnov test for one sample.
- 25. Stating assumptions, explain Wilcoxon onesample signed rank test.

2023/TDC(CBCS)/EVEN/SEM/ STSHCC-602T/276

J23-80/791