

2020/TDC (CBCS)/ODD/SEM/ STSHCC-501T/117

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

STATISTICS

(5th Semester)

Course No.: STSHCC-501T

(Stochastic Process and Queueing Theory)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions: $2 \times 10 = 20$
 - (a) Define generating function.
 - (b) What is bivariate generating function?
 - (c) Define stochastic process and state space.
 - (d) Define strict sense stationary process.

M39 (100 (8040) '27

- (e) When is a Markov chain said to be homogeneous and non-homogeneous?
- (f) When are the states of a Markov chain said to be persistent and transient?
- (g) Define transition probability matrix.
- (h) What is random walk?
- (i) State the postulates of Poisson process.
- (j) Prove that the sum of two independent Poisson processes is a Poisson process.
- (k) Why is the Poisson process not a stationary process?
- (1) Evaluate the mgf of a Poisson process $\{X(t)\}.$
- (m) Define queueing discipline.
- (n) What is traffic intensity?
- (o) Define transient state of a queueing model.
- (p) Derive the average waiting time of a customer in the queue, if he/she has to wait in M/M/1/N/FCFS model.

10-21/148

(Continued)

(3)

- (q) Define birth and death processes.
- (r) State the differential equation of birth and death processes.
- (s) If the game terminates when the gambler's capital become zero or N, then what is the transition probability of the Markov chain $\{X_n, n=0, 1, 2, \dots\}$?
- (t) Define the expected duration of game.

SECTION-B

Answer any five questions

- 2. Explain 1st- and 2nd-order stationary processes. 3+3=6
- **3.** Explain different classifications of random process.
- **4.** (a) Draw the graph of the Markov chain $\{X_n, n \ge 0\}$ with the following transition probability matrix with states 1, 2, 3:

$$\begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

10-21/148

(Turn Over)

(4)

(b) If $\{X_n, n \ge 0\}$ be a Markov chain having the state space $S = \{1, 2, 3, 4\}$ and transition probability matrix

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & 0 & 0\\ 1 & 0 & 0 & 0\\ \frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

then prove that-

(i) state '1' is persistent;

(ii) state '3' is transient.

state 3 is transient.

- 5. (a) Define Markov chain.
 - b) Write Chapman-Kolmogorov equation.
- **6.** Find the probability distribution of Poisson process $\{X(t)\}$ and hence find its mean. 4+2=6
- 7. (a) Prove that Poisson process is a Markov process.
 - (b) If $\{X(t)\}$ and $\{Y(t)\}$ be two independent Poisson processes, then show that the conditional distribution of $\{X(t)\}$ given $\{X(t) + Y(t)\}$ is binomial.

(5)

- 8. (a) Obtain steady-state probability in M/M/1 model with finite system capacity and hence obtain the waiting time.
 - (b) Obtain average number of customers in the system in M/M/1 model with finite system capacity.
- 9. Trains arrive at the yard every 15 minutes and the service time is 33 minutes. If the line capacity of the yard is limited to 4 trains, find—
 - (a) the probability that the yard is empty;
 - (b) the average number of trains in the system.
- 10. In a gambler's ruin problem, if f_i denotes the probability that starting with i amount of money the gambler eventually reaches N, then show that

$$f_{i} = \frac{1 - \left(\frac{q}{p}\right)^{i}}{1 - \left(\frac{q}{p}\right)^{N}}, \text{ if } p \neq \frac{1}{2}$$

$$= \frac{i}{1 - \left(\frac{q}{p}\right)^{N}}, \quad p = \frac{1}{2}$$

with p and q are having usual meanings.

0-21/148

(Continued)

3

2

3

3

10-21/148

(Turn Over)

(6)

11. A gambler with capital z plays against an adversary with capital (a-z). The game is played in stages. At each stage, the gambler can win one unit with probability p and loss one unit with probability q, p+q=1. Derive the expression for ultimate win of the gambler.

6

. .