2023/TDC(CBCS)/ODD/SEM/ STSHCC-501T/117

TDC (CBCS) Odd Semester Exam., 2023

STATISTICS

(Honours)

(5th Semester)

Course No.: STSHCC-501T

(Stochastic Process and Queueing Theory)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer ten questions, selecting any two from each
Unit: 2×10=20

UNIT-I

- 1. Derive the p.g.f. of the geometric distribution.
- 2. Derive probability-generating function of binomial distribution.
- 3. Give two examples of stochastic process.

(Turn Over)

UNIT-II

- 4. Define transition probability matrix.
- Define communicative state. Write the properties of the communicative state of a Markov chain.
- 6. Define persistent and recurrent states of a Markov chain.

UNIT-III

- 7. State the postulates of a Poisson process.
- State and prove the additive property of a Poisson process.
- 9. Define branching process with example

UNIT-IV

- 10. What do you mean by steady-state distribution?
- 11. Define single channel and multichannel queuing system.
- 12. Define waiting time distribution. How do you calculate waiting time in a Poisson distribution?

UNIT-V

- 13. Give an example of Gambler's ruin problem.
- 14. What is a classical ruin problem?
- 15. What is the risk of ruin in gambling?

SECTION—B

Answer five questions, selecting one from each
Unit

UNIT-I

- 16. Find the mean and variance of Bernoulli distribution, Poisson distribution and binomial distribution using p.g.f. 2+2+2=6
- 17. Define the following terms:

 $2 \times 3 = 6$

- (a) Mean stationary process
 - (b) Variance stationary process
- (c) Covariance stationary process

Unit--II

18. Discuss higher order transition probability of a Markov chain on the basis of Chapman-Kolmogorov equation.

6

19. Consider a Markov chain of states S = (0, 1, 2) and transition probability matrix

$$P = 1 \begin{pmatrix} 0 & 1 & 2 \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/4 & 1/4 \\ 0 & 1/3 & 2/3 \end{pmatrix}$$

Verify if the chain is irreducible or not.

UNIT-III

- Derive the probability function of the Poisson process.
- 21. Show that a random selection from a Poisson process is also a Poisson process.

UNIT-IV

22. Suppose computer programs are submitted for execution on a university's central computing facility and that these programs arrive at a rate of 10 per minute. Assume average run-time for a program is five seconds and that both interarrival times and run-times are exponentially distributed. During what fraction of the time is the CPU idle? What is the number of jobs in the job queue?

23. Consider a typical barber shop. Demonstrate that it is queueing system by describing its components.

UNIT-V

- 24. Obtain the equations for birth and death processes.
- Consider a Gambler who at each play of the game has probability p of winning one unit and probability q = 1 p of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the Gambler's fortune will reach N before reaching 0?

2023/TDC(CBCS)/ODD/SEM/ STSHCC-501T/117

24J-100/133

6