

## 2021/TDC/CBCS/ODD/ STSHCC-303T/114

## TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

## STATISTICS

( 3rd Semester )

Course No.: STSHCC-303T

( Mathematical Analysis )

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

#### SECTION—A

Answer any ten of the following questions:  $2\times10=20$ 

- 1. Define a real sequence with an example.
- 2. What do you mean by complete ordered field?
- 3. Define open set and closed set.
- 4. Define positive term series with an example.

<sup>22</sup>J/699

(Turn Over)

# Addorsonstate

- 5. How can you conclude that a given series is convergent or not?
- **6.** Is the series  $\sum_{n=0}^{\infty} \frac{1}{n}$  convergent?
- 7. Examine the validity of the hypothesis and the conclusion of Lagrange's mean value theorem for the function  $f(x) = 2x^2 7x + 10$  on [2,5].
- 8. Write series expansion of  $\cos x$ .
- 9. State mean value theorem for derivatives.
- 10. Find the value of  $\frac{\Delta^2}{E} x^3$ .
- 11. Prove that  $\Delta^n C_{x+1} = {}^n C_x$ , where  $\Delta$  operates over n only.
- 12. Prove that the third divided difference with arguments a, b, c, d of  $f(x) = \frac{1}{x}$  is  $-\frac{1}{abcd}$ .
- 13. Define the operators  $\delta$  and  $\mu$ .
- 14. Obtain relation between operators E and  $\delta$ .
- 15. What do you mean by numerical integration?

22J/**699** (Continued)

(3)

## SECTION-B

Answer any five of the following questions: 6×5=30

- 16. (a) Prove that a sequence cannot converge to more than one limit.
  - (b) State and prove Cauchy's first theorem on limits.

2

3

2

17. (a) Show that the sequence  $\{S_n\}$ , where

$$S_n = \left(1 + \frac{1}{n}\right)^n$$

is convergent and limit of  $S_n$  lies between 2 and 3.

(b) Show that the sequence  $\{S_n\}$ , where

$$S_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

cannot converge.

- 18. (a) Explain Cauchy's nth root test.
  - (b) What is meant by absolute convergence of series?
  - (c) Test the convergence of the series

$$\frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots, x > 0$$
 2

22J**/699** (Turn Over)



(4)

22J**/699** 

(5)

| 19  | . (a) | Discuss about Lebnitz's test for convergence of alternating series.                | 2  | 23. | inte | te and prove Newto<br>rpolation formula and<br>ditions for its use. | on's forward<br>mention the |
|-----|-------|------------------------------------------------------------------------------------|----|-----|------|---------------------------------------------------------------------|-----------------------------|
|     | (b)   | Explain D'Alembert's ratio test.                                                   | 2  |     |      |                                                                     | 5+                          |
|     | (c)   | Test for convergence of the series                                                 |    | 24. | (a)  | Derive Simpson's three-e                                            | ighths rule.                |
|     | F TT  | $\sum \frac{n^2-1}{n^2+1} x^n,  x>0$                                               | 2  |     | (b)  | If $f(x)$ can be repre polynomial of degree 2, th                   | sented by a                 |
| 20  | (a)   | State and prove Rolle's mean value                                                 |    |     |      | $\int_0^1 f(x)dx = \frac{1}{12} [5f(0) + 8f(0)]$                    | f(1)-f(2)]                  |
| 20. | (a)   | theorem.                                                                           | 4  |     |      |                                                                     |                             |
|     | (b)   | Give geometrical interpretation of                                                 |    | 25. | (a)  | Obtain Gauss forward formula.                                       | interpolation               |
|     |       | Lagrange's mean value theorem.                                                     | 2  | ļ.  | (b)  | Solve':                                                             |                             |
| 21. | (a)   | Explain Taylor's theorem with Lagrange's form of remainder.                        | 3  |     |      | $u_{x+1} - \frac{1}{x}u_x = 0,  x > 0$                              |                             |
|     | (b)   | What is Taylor's series?                                                           | 1  |     |      |                                                                     |                             |
|     |       |                                                                                    |    |     |      | ***                                                                 |                             |
|     | (c)   | Obtain Maclaurin's series expansion of $(1+x)^n$ , when $n$ is a positive integer. | 2  |     |      | *                                                                   | Å .                         |
| 22. | (a)   | State Lagrange's interpolation formula.                                            |    |     |      |                                                                     | 4                           |
|     |       | If $u_0 = a$ , $u_2 = b$ and $u_4 = c$ , prove that                                |    |     |      |                                                                     |                             |
|     |       | $u_x = a + \frac{x}{2}(b-a) + \frac{x(x-2)}{8}(c-2b+a)$ 1+3                        | =4 |     |      | Kaling garage                                                       | * * *                       |
|     | (b)   | Mention the assumptions of using interpolation technique.                          | 2  |     |      |                                                                     |                             |
|     |       |                                                                                    |    |     |      | 2021.                                                               | /TDC/CBCS/O                 |

(Continued)

22J/699

2021/TDC/CBCS/ODD/ STSHCC-303T/114

5+1=6

2

2