2023/TDC(CBCS)/ODD/SEM/ STSHCC-303T/114

TDC (CBCS) Odd Semester Exam., 2023

STATISTICS

(Honours)

(3rd Semester) | toda work

Course No.: STSHCC-303T

(Mathematical Analysis)

Full Marks: 50

Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

de el mai do you mean

SECTION—A

Answer ten questions, selecting any two from each.
Unit:

8. Examine the valid TINU he I we should an

conclusion of Lagrange

- 1. What is closed set? Prove that a set is closed if its complement is open.
- 2. Show that every infinite bounded set has a limit point.

24J/130

(Turn Over)

3. Define neighbourhood of a point. What is limit point of a set?

UNIT-II

4. Show that the series

$$\frac{1}{(\log 2)^p} + \frac{1}{(\log 3)^p} + \dots + \frac{1}{(\log n)^p} + \dots$$

diverges for p > 0.

- 5. State Raabe's test.
- 6. What do you mean by an infinite series? Also state the condition necessary and sufficient for an infinite series to be convergent.

UNIT-III

- 7. State Rolle's theorem.
- 8. Examine the validity of the hypothesis and the conclusion of Lagrange's mean value theorem of the following:

$$f(x) = 2x^2 - 7x + 10$$
 on [2, 5]

 Give the geometrical interpretation of Lagrange's mean value theorem.

UNIT-IV

10. Prove that

$$\Delta u_{x} v_{x} = u_{x+1} \cdot \Delta v_{x} + v_{x} \cdot \Delta u_{x}$$

- 11. Define E. Evaluate $(Ex^2)^2$.
- 12. Prove that

$$e^x = \frac{\Delta^2}{E} \cdot e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$$

UNIT-V

- 13. State Gauss' forward and backward interpolation formula.
- 14. If $u_x = a + bx + cx^2$, then prove that

$$\int_{1}^{3} u_{x} dx = 2u_{2} + \frac{1}{12} (u_{0} - 2u_{2} + u_{4})$$

the state of the s

15. What is numerical integration?

SECTION-B

Answer five questions, selecting one from each
Unit: 6×5=30

UNIT-I

- **16.** (a) Prove that a sequence cannot converge to more than one limit.
 - (b) Show that the sequence $\{S_n\}$, where

$$S_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}$$

converges to zero.

17. (a) Show that

$$\lim \frac{(3n+1)(n-2)}{n(n+3)} = 3$$

(b) State and prove Cauchy's first theorem on limits.

UNIT-I

- **18.** (a) Explain D'Alembert's ratio test for positive term series.
 - (b) Test for convergence of the series

$$\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \frac{4^2 \cdot 5^2}{4!} + \dots$$

24J/130

(Continued)

3

2

- 19. (a) What do you mean by absolute convergence of series?
 - (b) Test for the absolute convergence of the following series:

(i)
$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

(ii)
$$1 = \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

UNIT-III

- (a) Show that the number θ which occurs in the Taylor's theorem with Lagrange's form of remainder after n terms approaches the limit 1/(n+1) as h→0, provided that fⁿ⁺¹(x) is continuous and different from zero at x = a.
 - (b) Obtain Maclaurin's series expansion of $(1+x)^n$, when n is a positive integer.
- 21. (a) State and prove Lagrange's mean value theorem.
 - (b) What is Taylor's series? Write the Taylor's series expansion of $\sin x$ at x = 0.

24J/130

(Turn Over)

2

UNIT-IV

- 22. (a) Prove that the nth difference of a polynomial of degree n is constant, when the values of the argument are equidistant.
- 5
- State the relation between ordinary (b) difference and divided difference.
- 1

3

- 23. Derive Lagrange's interpolation formula. (a)
 - (b) Prove by Lagrange's formula

$$u_1 = u_3 - 0.3(u_5 - u_{-3}) + 0.2(u_{-3} - u_{-5})$$
 3

UNIT-

- State and prove Simpson's 1/3rd rule.
- 6

25. Evaluate

$$\int_{0}^{2} u_{x} dx$$

given

x	u_x	
0	u_0	Tid - ", bas
	u_1 u_2	inspiral. White Caves a call
2	u_2	o dolette expansion o

6

 $\star\star\star$

2023/TDC(CBCS)/ODD/SEM/ STSHCC-303T/114