Cz. it

2020/TDC(CBCS)/ODD/SEM/ STSHCC-301T/112

and and and a

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

(2) Baginsan for one dept. of shoulded on the

Stere Lyaparcoff a country of the seren

STATISTICS

(3rd Semester)

Course No.: STSHCC-301T

(Limit Laws, Testing of Hypothesis and Sampling Distribution)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions: $2 \times 10 = 20$
 - (a) Define convergence in mean square. 2
 - (b) State strong law and weak law of large numbers. 1+1=2

(Turn Over)

Dartel

\$2013\$0 CBCS /ODD/SEM/	(3)
 (c) State Lyapunoff's central limit theorem. (d) Define convergence in distribution. (e) Explain the concept of standard error. What is the standard error of a sample mean? 	 (o) State and prove the additive property of chi-square variates. (p) Obtain the m.g.f. of χ²-distribution with n-degrees of freedom.
(f) Define critical region and level of significance. $1+1=2$	(q) Write down the applications of t-distribution.
(g) Define sample range and sample median. 1+1=2	(r) Define Snedecor's F-statistic and write its p.d.f. 1+1=2
(h) Explain briefly the applications of order statistics.	(s) Write the applications of F-distribution.(t) Discuss how to test the significance of
(i) Obtain the c.d.f. and p.d.f. of first-order statistic $X_{(1)}$. 1+1=2	an observed correlation coefficient <i>r</i> , when population correlation coefficient
(j) Define simple and composite hypotheses with examples. 1+1=2	ρ = 0. The manufacture of the
(k) Define critical value. What is statistical hypothesis? 1+1=2	Answer any five questions
(l) Write notes on one-tailed and two-tailed tests.	2. (a) If X is a random variable such that $E(X) = 3$ and $E(X^2) = 13$, use
(m) Define chi-square variate and write its p.d.f. for n-degrees of freedom. 1+1=2	Chebyshev's inequality to determine a lower bound for the probability $P[-2 < X < 8]$.
(n) State the applications of chi-square distributions.	(b) State and prove de Moivre-Laplace central limit theorem.
10-21/84 (Continued)	10-21 /84 (Turn Over)

3. (a) Let X_1, X_2, \dots, X_n be i.i.d. Poisson variates with parameter λ . Use central limit theorem (CLT) to estimate

they reliable $P[120 \le S_n \le 160]$

where $S_n = X_1 + X_2 + \dots + X_n$; $\lambda = 2$ and

- (b) State central limit theorem. Also explain some applications of central limit
- Obtain the joint p.d.f. of r-th and s-th (a) order statistics $X_{(r)}$ and $Y_{(s)}$.
 - Derive the distribution of sample median. estatarire antichiaca
- Obtain the sampling distribution of mean of a random sample drawn from a normal population.
 - Show that the standard error of sample mean of a sample of size n drawn without replacement is

$$\frac{\sigma}{\sqrt{n}}\sqrt{\frac{N-n}{N-1}}$$

where N = population size

 σ^2 = population variance

Describe the large sample test for difference of means of two distinct populations.

Explain the concept of p-value. Obtain the test of significance for large samples 1+2=3for single mean.

Describe the test of significance for large 7. (a) samples for difference between two proportions.

Obtain the large sample test for difference of standard deviations for two distinct populations.

8. (a) If χ_1^2 and χ_2^2 are two independent χ^2 -variates with n_1 and n_2 degrees of freedom, then prove that

$$\frac{\chi_1^2}{\chi_2^2} \text{ is a } \beta_2\left(\frac{n_1}{2}, \frac{n_2}{2}\right)$$

- of Obtain mode skewness χ^2 -distribution with n-degrees of freedom. 3

3

3

3

$$X \sim \chi^2_{(n)}$$

then prove that
$$\frac{X-n}{\sqrt{2n}} \sim N(0,1)$$

where symbols have their meanings.

10-21/84

(Turn Over)

3

3

3

(Continued)

10-21/84

(b) For a 2×2 contingency table

and their distriction

a	b
C	d

prove that χ^2 -test of independence of attribute gives

$$\chi^{2} = \frac{N(ad - bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$$

where N = a + b + c + d.

10. (a) Describe the test of significance of mean of a univariate normal population in

case of small sample and hence obtain the confidence interval of population mean.

(b) For the t-distribution with n.d.f., establish the recurrence relation

$$\mu_{2r} = \frac{n(2r-1)}{(n-2r)} \cdot \mu_{2r-2}, \ n > 2r$$

11. (a) Obtain the relation between t-distribution and F-distribution and also between χ^2 -distribution and F-distribution.

(b) Derive the distribution of Snedecor's F-statistic.

* * *

2020/TDC(CBCS)/ODD/SEM/ STSHCC-301T/112

10-21-150/84

1(

1

3

3

3