

2023/TDC(CBCS)/EVEN/SEM/ STSHCC-202T/268

TDC (CBCS) Even Semester Exam., 2023

STATISTICS

(Honours)

(2nd Semester) of (A) I had

Course No. : STSHCC-202T

(Algebra)

Full Marks: 50

Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any *ten* of the following questions: $2 \times 10 = 20$

- 1. Define theory of equations. Write down the difference between complete and incomplete equations.
- 2. If the roots of the equation

$$x^3 + 3px^2 + 3qx + r = 0$$

are in AP, then prove that $2p^3 - 3pq + r = 0$.

J23/521

(Turn Over)

d. Internet diam

all a english of the

UR.	7.5 d d + 4	2	100	

- 3. Find the roots of the equation $x^3 3x^2 + 4 = 0$, if two roots of its being equal.
- Define vector space and basis of a vector space.
- 5. Let V(F) be a vector space. Then show that if $a, b \in F$ and α is a non-zero element of V, then $a\alpha = b\alpha \Rightarrow a = b$.
- 6. Prove that if two vectors are linearly dependent, then one of them is a scalar multiple of the other.
- 7. Define triangular matrix.
- Define idempotent matrix and trace of a matrix.
- 9. Define unitary and involutory matrices.
- 10. Define echelon form of a matrix.
- 11. Define determinant of a square matrix.
- 12. When is a matrix said to be non-singular? Define inverse of a matrix.
- 13. Define rank of a matrix.

(Continued)

10 mg 1

(3)

Prove that if X is a characteristic vector of a matrix A , then X cannot correspond to more than one characteristic value of A .
Define characteristic matrix and characteristic equation of a matrix.
SECTION—B
wer any five of the following questions: 6×5
(a) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the values of (i) $\sum \alpha^3 \beta^3$, (ii) $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ and

17. (a) Solve the following by Cardan's method: 4 $x^3 - 15x^2 - 33x + 847 = 0$

State and prove the fundamental

(b) Find the roots of the equation $x^3 + 7x^2 + 14x - 9 = 0$ if the roots are in GP.

theorem of algebra.

18. (a) Show that the intersection of any two subspaces W_1 and W_2 of a vector space V(F) is also a subspace of V(F).

(b) Show that any subset of a linearly independent set of vectors V(F) is linearly independent.

(Turn Over)

2

3

J23/**521**

J23/521

(4)

(5)

- 19. (a) State the general properties of vector space. 2
 - (b) Show that there exists a basis for each finite dimensional vector space.
- 20. (a) Show that every square matrix is uniquely expressible as a sum of symmetric matrix and a skew-symmetric matrix.
 - (b) Define orthogonal matrix. If

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

then show that A is an orthogonal matrix.

- 21. (a) Prove that the necessary and sufficient condition for a square matrix A to possess inverse is that $|A| \neq 0$.
 - (b) Prove that

$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^{2}$$

J23/521

(Continued)

3

22. (a) Solve completely the following system of equations:

$$x+3y-2z=0 2x-y+4z=0 x-11y+14z=0$$

- (b) Prove that the system of equations AX = B is consistent, i.e., it possesses a solution, if and only if the coefficient matrix A and the augmented matrix [A:B] are of same rank.
- 23. Check the consistency of the following equations:

$$x+2y-z=3$$
$$3x-y+2z=1$$
$$2x-2y+3z=2$$
$$x-y+z=-1$$

If they are consistent, solve them.

- 24. (a) Prove that the rank of the transpose of a matrix is same as that of the original matrix.
 - (b) Define quadratic form over a field.

 Write down the matrix of the following quadratic form:

 1+2=3

$$x_1^2 + 2x_2^2 - 5x_3^2 - x_1x_2 + 4x_2x_3 - 3x_3\dot{x}_4$$

J23/521

(Turn Over)

3

3

6

3

(6)

25. Determine the characteristic roots and the corresponding characteristic vectors of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

residence of part temperatures at \$1 a 7.0 are serviced from the control of a serviced from the control of a serviced from the control of a serviced and the serviced from the ser

23. Check the countries of the following

The state of the s

The paragraph of the form of the brusspace of and the same of the straight of the same of

We live questratio form perty a field.
We distribute the mentile of the following of the following.

A PER HEAL CARLES - PROPERTY LA