2019/TDC/EVEN/STSHC-201T/090

TDC (CBCS) Even Semester Exam., 2019

STATISTICS

(2nd Semester)

Course No.: STSHCC-201T

(Probability and Probability Distributions)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

UNIT-I

- **1.** Answer any *two* of the following: $2 \times 2 = 4$
 - (a) Define distribution function of a random variable and write down its properties.
 - (b) Let X and Y be two random variables with joint density function

$$f(x, y) = c(2x + y), 0 < x < 1, 0 < y < 2$$

= 0, otherwise

Find the value of c.

(c) Explain conditional probability distribution of Y under the condition that X = x in both discrete and continuous cases.

(Turn Over)

2

2

090/1102-08878/(:2-)\041/0101

Answer either Question No. 2 or 3:

- 2. (a) Define conditional probability density function and joint distribution function of two-dimensional random variable.
 - (b) Let X be a random variable with probability density function

$$f(x) = \frac{x}{12}, \ 1 \le x \le 5$$
$$= 0, \text{ otherwise}$$

Find probability density function of Y = 2X - 3.

(c) The joint p.d.f. of (X, Y) is $f(x, y) = Axy, \ 1 \le x \le y, \ 1 \le y \le 2$ = 0, otherwise

Find the value of A. Hence obtain marginal distributions of X and Y. 1+1=2

3. (a) Define probability mass function and probability density function for a random variable in both discrete and continuous cases.

(Continued)

2

(3)

(b) Two discrete random variables X and Y have

$$P(X = 0, Y = 0) = \frac{2}{9}$$

$$P(X = 0, Y = 1) = \frac{1}{9}$$

$$P(X = 1, Y = 0) = \frac{1}{9}$$

$$P(X = 1, Y = 1) = \frac{5}{9}$$

- (i) Find marginal distributions of X and Y.
- (ii) Find conditional probability distribution of X given Y = 1.
- (iii) Examine whether X and Y are independent. 2+1+1=4

UNIT-II

- 4. Answer any two of the following: 2×2=4
 - (a) Show that for a random variable X, $E(X^2) \ge \{E(X)\}^2$ provided that the first two moments exist.
 - (b) What do you mean by mathematical expectation of a random variable? Prove that E(aX + b) = aE(X) + b.
 - (c) From the following distribution, obtain E(X) and $E(X^2)$:

J9/2212

(Turn Over)

J9/2212

3

Answer either Question No. 5 or 6:

- 5. (a) Show that the mathematical expectation of the sum of two random variables is equal to the sum of their individual provided the expectations, expectations exist.
 - (b) The bivariate probability distribution of two random variables X and Y is given below:

$X \rightarrow \pi_{i-1}$		0	110	Total
Y	1 500)	A har v	11/0	
-1	0	0.1	0.1	0.2
0	0.2	0.2	0.2	0.6
1	0	0.1	0.1	0.2
Total	0.2	0.4	0.4	1

Find E(X) and E(Y).

- 6. (a) Find the mathematical expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability p of success in each trial.
 - State and prove the multiplication theorem of expectations.

J9/2212

(Continued)

3

3

J9/2212

(5)

	UNIT—III
7.	Answer any two of the following: $2\times2=4$
	(a) Define moment-generating function and characteristic function for both discrete and continuous random variables.
	(b) If X is a random variable with probability function $P(X = x) = q^{x} p; x = 0, 1, 2, \cdots$
	find the moment-generating function of X.
	(c) Show that characteristic function of a random variable always exists.
Ansv	ver either Question No. 8 or 9:
8.	(a) Find the effect of change of origin and scale on cumulants.
	(b) State the properties of characteristic function.
∘ 9.	(a) Obtain mean, variance, μ_3 and μ_4 of a random variable in terms of cumulants.
	(b) State uniqueness theorem of moment- generating function. 1
	(c) Show that characteristic function of the sum of independent random variables is
-	equal to the product of their respective
	characteristic functions.

(Turn Over)

(6)

UNIT-IV

10.	Answ	ver any two of the following: 2×2	=4	13.	Alls	wer any two of the following: $2\times 2=$	
	(a) The mean and variance of a binomial variate X with parameters n and p are				(a)	Write any four properties of normal distribution.	
		16 and 8. Find $P(X \ge 2)$.			(b)	Define beta distribution of first kind.	
	(b)	1 of aggregation of			(c)	Show that the exponential distribution lacks memory, i.e., if X has an	
	(c)	What is hypergeometric distribution?				exponential distribution, then for every constant $a \ge 0$, $P(Y \le x X \ge a) = P(X \le x)$	
Ans	wer ei	ther Question No. 11 or 12:				for all x , where $Y = X - a$.	
11.	(a)	(a) Obtain mean and variance of binomial		Answer either Question No. 14 or 15:			
		distribution.	3	14.	(a)	Show that mean and variance of	
	(b)	Derive Poisson distribution as a limiting				Gamma distribution are equal.	
		case of negative binomial distribution.	3		(b)	Obtain moment-generating function of normal distribution.	
12.	(a)	If X follows hypergeometric distribution					
		with parameters (N, M, n), then deduce		15.	(a)		
		the recurrence relation of probabilities of the distribution.	3			find the distribution of $-2\log X$ and identify the distribution.	
	(b)	Obtain the recurrence relation between moments of Poisson distribution			(b)	If X and Y are independent Gamma variates with parameters μ and λ respectively, then show that $U = X + Y$	
		$\mu_{r+1} = \lambda \left(r \mu_{r-1} + \frac{d \mu_r}{\partial \lambda} \right)$				and $Z = \frac{X}{X+Y}$ are independently	
		where μ_r is the rth moment about				distributed. Also find distribution of U	

J9/2212

(Continued)

mean λ. ences but but a relocated by

J9—150/2212 2019/TDC/EVEN/STSHC-201T/090

and Z.

3

3

3

3