## 2022/TDC/ODD/SEM/ STSDSC/GE-301T/115

Then I Was

grandited with the wine committee of the

# TDC (CBCS) Odd Semester Exam., 2022

( 3rd Semester )

Course No.: STSDSC/GE-301T strictie " and" inshippinte

(Statistical Inference)

Full Marks: 50 Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

### UNIT—I Subratian

1. Define any three of the following:  $1\times 3=3$ 

- (a) Parameter in the limit will be like I and the
- Random sample
- (c) Level of significance
- (d) Statistic



(2)

2. Answer any one of the following:

 (a) Distinguish between null hypothesis and alternative hypothesis.

(b) What do you mean by power of a test and critical region?

3. Answer any one of the following:

(a) What are simple and composite hypotheses? Give examples.

(b) Explain the concepts of type-I and type-II errors.

#### UNIT-II

4. Answer any three of the following:

1×3=3

5

(a) What is sampling distribution of a statistic?

(b) Define standard error.

(c) What is the significant value of z at 5% level of significance for a two-tailed test?

(d) What is the test statistic for testing the significance for difference of proportions in large sample?

(Continued)

(3)

5. Answer any one of the following:

2

(a) Obtain the standard error of sample mean of a random sample of size n.

(b) Explain the test of significance for testing the single mean in large samples.

6. Answer any one of the following:

5

(a) Explain the test of significance for testing the difference of means in large samples.

(b) A random sample of 500 pineapples was taken from a large consignment and 65 were found to be bad. Show that the SE of the proportion of bad ones in a sample of this size is 0.015 and deduce that the percentage of bad pineapples in the consignment almost certainly lies between 8.5 and 17.5.

#### UNIT-III

7. Answer any three of the following:

1×3=3

(a) Define chi-squared variate.

(b) What is F-statistic?

(c) Write the p.d.f. of t-distribution.

(d) What is the limit of chi-squared variate?

J23/207

(Turn Over)

J23/207



(4)

| <b>8.</b> | Answer any one of the following:                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------|
|           | (a) Write the applications of F-distribution.                                                             |
|           | (b) State the conditions for the validity of chi-squared test.                                            |
| 9.        | Answer any one of the following: 5                                                                        |
|           | (a) What is a contingency table? The following data is collected on two characters:                       |
|           | Cinegoers Non-Cinegoers                                                                                   |
|           | Literate 83 57 Illiterate 45 68                                                                           |
|           | Based on this, can you conclude that there is no relation between the habit of cinema going and literacy? |
|           | [Table value of $\chi^2_{0.05}$ for 1 d.f. = 3.841]                                                       |
|           | 3+2=5                                                                                                     |
|           | (b) Define Student's t-statistic. A random<br>sample of 10 observations gave the                          |
|           | following results:                                                                                        |
| ţ,t-      | $\sum_{i=1}^{10} x_i = 400,  \sum_{i=1}^{10} x_i^2 = 16150$                                               |
|           | Test if the sample has come from a                                                                        |

[Given table value of t at 5% level of significance for 8 d.f. is 2.31 and for

9 d.f. is 2.26]

J23/207

2+3=5

(Continued)

(5)

| T | INIT  | _IV |
|---|-------|-----|
| • | 11711 | TA_ |

| 10. | Ans | wer any three of the following: 1×3                                                                                                     | =3 |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| 1   | (a) | What is a parameter space?                                                                                                              |    |
|     | (b) | What is the consistent estimator of $\mu$ in sampling from an $N(\mu, \sigma^2)$ ?                                                      |    |
|     | (c) | When would you say that the estimate of a parameter is good?                                                                            |    |
|     | (d) | Define most efficient estimator.                                                                                                        |    |
| 11. | Ans | wer any one of the following:                                                                                                           | 2  |
|     | (a) | Define minimum variance unbiased estimator (MVUE).                                                                                      |    |
|     | (b) | Let $x_1, x_2, \dots, x_n$ be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient estimators for $\mu$ and $\sigma^2$ . | 1  |
| 12. | Ans | wer any one of the following:                                                                                                           | 5  |
|     |     |                                                                                                                                         |    |

(a) Define point estimation. What are the criteria of a good estimator?

J23/207

(Turn Over)

1+4=5



(6)

(b) A random sample  $(x_1, x_2, x_3, x_4, x_5)$  of size 5 is drawn from a normal population with unknown mean \u03c4. Consider the following estimators to estimate µ:

$$t_1 = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

$$x_1 + x_2$$

(ii) 
$$t_2 = \frac{x_1 + x_2}{2} + x_3$$

(iii) 
$$t_2 = \frac{x_1 + x_2}{2} + x_3$$
  
(iii)  $t_3 = \frac{2x_1 + x_2 + \lambda x_3}{3}$ 

Find the value of  $\lambda$  such that  $t_3$  is an unbiased estimator of  $\mu$ . Are  $t_1$  and  $t_2$ State giving reasons, unbiased? the estimator which is best among  $t_1$ ,  $t_2$ and  $t_3$ .

#### UNIT-V

- 13. Answer any three of the following as  $1 \times 3 = 3$ directed:
  - What is a likelihood function?
  - Define confidence interval.
  - What is the 95% confidence limit for parameter µ?
  - estimate The sample median is \_ for the mean of normal population.

(Fill in the blank)

(Continued)

14. Answer any one of the following:

In random sampling from normal population  $N(\mu, \sigma^2)$ , find the maximum likelihood estimators for  $\mu$  when  $\sigma^2$  is

known.

State Cramer-Rao inequality.

15. Answer any one of the following:

5

Explain the method of maximum estimation. likelihood State of maximum likelihood properties estimators. 2+3=5

State the regularity conditions for Cramer-Rao inequality. 5

J23-280/207

2022/TDC/ODD/SEM/ STSDSC/GE-301T/115

J23/207