

2019/TDC/ODD/SEM/STSDSC/ STSGE-301T/120

TDC (CBCS) Odd Semester Exam., 2019

STATISTICS

: anouseup a (3rd Semester)

Course No.: STSDSC/STSGE-301T

(Sampling Distribution, Testing of Hypothesis, Inference)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

LEGOLOGICA DE LA VIOLUNITE LA LA VIOLE DE LA VIOLE DE

1. Answer any three of the following questions:

 $1 \times 3 = 3$

- (a) Define critical region.
- (b) Define critical value.
- (c) What is statistical hypothesis?
- (d) Define level of significance.

(Turn Over)

+ 10	0	1
à l	4	1

- 2. Answer any one of the following questions:

 (a) Define null and alternative hypotheses.
 - (b) Define parameter and statistics.

1/3108-30918

- 3. Answer any one of the following questions: 5

 (a) (i) Define producer's risk and consumer's risk. Between them, which is more serious? 2+1=3
 - (ii) Define the following terms:
 - (1) Type-I error
 - (2) Type-II error
 - (b) Define simple and composite hypotheses.

 Write a note on one-tailed and two-tailed test.

 2+3=5

UNIT-II

- **4.** Answer any *three* of the following questions: 1×3=3
 - (a) What is sampling distribution of a statistic?
 - (b) Define standard error.
 - (c) Define test statistic.
 - (d) If \overline{x} be the sample mean, then find the value of $SE(\overline{x})$ in raise to level matter (b)

- 5. Answer any one of the following questions:
 - (a) If x_1, x_2, \dots, x_n be a random sample of size n and s^2 be the variance of the sample of size n, and σ^2 is the population variance, then what is the unbiased estimate of σ^2 ?
 - (b) Write the test statistic for testing the difference of means of a large sample, when the population variances are unknown.
- 6. Answer any one of the following questions:
 - (a) Prove that sample mean is an unbiased estimate of population mean. Write the test statistic for testing the difference of standard deviation of two population. 3+2=5
 - (b) Explain the various steps in testing a statistical hypothesis for large sample in a systematic manner. For large n, what is the distribution of \overline{x} , where \overline{x} is the sample mean?

UNIT-III

7. Answer any three of the following questions:

1×3=3

2

(a) Define χ^2 -statistic with n degrees of freedom.

20J/1153

(Turn Over)

20J/**1153**

(Continued)

- (b) If $t \sim t_{(n)}$, then find the value of E(t).
- (c) State Snedecor's F-statistic.
- (d) State the relation between mean and variance of χ^2 -distribution.
- 8. Answer any one of the following questions:
 - (a) Write the moment-generating function and cumulant-generating function of χ^2 -distribution.
 - (b) Write the applications of Student's t-distribution.
- 9. Answer any one of the following questions:
 - (a) State the conditions of validity of χ^2 -distribution.
 - (ii) For a 2×2 contingency table

prove that χ^2 -test of independence of attributes gives

$$\chi^2 = \frac{N(ad - bc)^2}{(a+b)(a+c)(b+d)(c+d)}, \ N = a+b+c+d$$

(b) Define Student's t-statistic. Explain the test procedure to test the hypothesis for single mean, when the sample size is 1+4=5 small.

the Define RevisiaVI TINU mean theorem. If

- 10. Answer any three of the following questions:
 - (a) Define parameter space.
 - (b) If e be the efficiency, then what is the maximum limit of e?
 - State the sufficient conditions consistency.
 - (d) Define minimum variance unbiased & estimator.
- 11. Answer any one of the following questions: 2
 - (a) Define estimate and estimator.
 - (b) Define consistency of an estimator.
- 12. Answer any one of the following questions:
 - (a) Define unbiasedness of an estimator. If x_1, x_2, \dots, x_n is a random sample from a normal population $N(\mu, 1)$, then show that

$$t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

is an unbiased estimator of $\mu^2 + 1$. 1+4=5

20J/1153

(Turn Over)

20J/1153

(Continued)

(a) Find the maximum likelihood estimate

15. Answer any one of the following questions:

(b) Define Neyman factorization theorem. If x_1, x_2, \dots, x_n be a random sample from a Bernoulli population with parameter p, then prove that $\sum_{i=1}^{n} x_i$ is a sufficient Il e be the efficiency statistic for p.

- 13. Answer any three of the following questions:
 - (a) State Cramer-Rao inequality. the little fallenging desprise
 - (b) What is power of a test?
 - (c) Define likelihood function.
 - (d) What is maximum likelihood estimation? And was any one-fold to hollowers of the restant
- 14. Answer any one of the following questions:
 - (a) State the assumption of maximum likelihood estimation.
 - (b) Write a note on confidence interval.

20J-340/1153

for the parameter λ of a Poisson distribution, when the size of the sample

is n. Whether maximum likelihood estimators are always consistent

estimator or unbiased estimator?

(b) State and prove Neyman-Pearson lemma.

2019/TDC/ODD/SEM/STSDSC/ STSGE-301T/120

20J/1153

(Continued)