

# **Syllabi of Mathematics SEC Courses**

| Semester*          | :I                                                                     |
|--------------------|------------------------------------------------------------------------|
| Course Type        | : SEC                                                                  |
| Course Code**      | : MATDSEC101                                                           |
| Name of the Course | : Mathematical Skill Development with Software (Theory with Practical) |
| Learning level***  | : 100                                                                  |
| Credits            | :3                                                                     |
| Contact Hours      | : 50                                                                   |
| Total Marks        | : 100                                                                  |
| End Semester Marks | : 80 (Theory: 50, Practical: 30)                                       |
| Internal Marks     | : 20                                                                   |
| Course Objective   |                                                                        |

The main objective of this course is

- 1. To enhance and strengthen one's understanding and proficiency in various mathematical concepts and techniques.
- 2. To plot the graphs of various functions and analyse them.
- 3. To enhance learners problem-solving skills by applying mathematical principles in a visual and intuitive manner using software applications.

## **THEORY**

## Unit – I

Introduction to problem solving with computer programming. Introduction to algorithms, flowcharts, symbols used in flowcharts. Algorithms and flowcharts for decision making - use of if-then, if-then-else, nested if-then-else. Algorithms and flowcharts for problems involving iterations and looping - use of repeat-while. Algorithms and flowcharts involving arrays. Common exercises involving each of the above from the textbook.

## Unit – II

Relations, functions, types of functions: exponential, logarithm, trigonometric, polynomial, periodic, greatest integer, injective, surjective, bijective, even and odd. Operation of functions: addition, subtraction, multiplication, division and composition.

## Unit– III

Well-ordering property of positive integers, Division algorithm, Divisibility of integers, Euclidean algorithm, Greatest Common Divisor (GCD), Prime number, Fundamental Theorem of Arithmetic, Congruence relation between integers, properties of congruences.

## Unit– IV

Idempotent, nilpotent, involutory matrices, transpose of a matrix, conjugate of a matrix, symmetric, skew symmetric, Hermitian, skew Hermitian, orthogonal, unitary matrices, adjoint of a square matrix, Jacobi's theorem, inverse of a square matrix.

#### Unit–V

Introduction of differential equation, basic concepts, general and particular solutions of a differential equation, formation of a differential equation whose general solutions are given. Methods of solving differential equations: variable separable, homogeneous differential equation, linear differential equation.

#### **Textbooks:**

- 1. A.B. Chaudhuri, Flowchart and Algorithm Basics: The Art of Programming, 1<sup>st</sup> ed., Mercury Learning and Information, 2020.
- 2. J.G. Chakraborty and P.R. Ghosh, Higher Algebra: Classical and Modern, 23<sup>rd</sup> ed., U.N. Dhur and Sons, 1972.

[Unit – II to Unit – IV]

3. D.M. Burton, Elementary Number Theory, 7<sup>th</sup> ed., McGraw Hill Education, 2017.

[Unit – III]

[Unit – I]

4. M.D. Raisinghania, Ordinary and Partial Differential Equations, 20<sup>th</sup> ed., S. Chand, 2020. [Unit – V]

#### **Reference books:**

- 1. S.K. Mapa, Higher Algebra: Classical, 9<sup>th</sup> ed., Sarat Book House, 2021.
- 2. S.B. Malik, Basic Number Theory, 2<sup>nd</sup> ed., Vikas Publishing House, 2018.
- 3. S.L. Ross, Differential Equations, 3<sup>rd</sup> ed., Wiley, 2007.
- 4. S. Lipschutz and M. Lipson, Schaum's Outlines: Linear Algebra, 3<sup>rd</sup> ed., McGraw Hill Education, 2017.

## PRACTICAL

## (Using any software)

- 1. Input the values of variables and display them, demonstrate use of if, if-else, nested if statements, demonstrate use of loops, demonstrate the use of arrays
- 2. Plotting of graphs of various functions
- 3. Check, obtain, list the prime numbers and check divisibility, obtain divisor, remainder and GCD of two numbers
- 4. Different operations of matrices (Like addition, multiplication, transpose, inverse, etc.)
- 5. Solving ordinary differential equation through software and plotting the solution of the family of differential equation

#### **Course Learning Outcome**

After completing the course, learners will

- 1. Build a solid understanding of the core principles that underpin various branches of mathematics, laying the groundwork for their application in science and technology fields.
- 2. Gain proficiency in utilising mathematical software to solve a wide range of mathematical problems.