

2021/TDC(CBCS)/EVEN/SEM/ PHSHCC-602T/097

TDC (CBCS) Even Semester Exam., September—2021

and by PHYSICS ... of and of the

(6th Semester)

Course No.: PHSHCC-602T

(Statistical Mechanics)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten questions:

2×10=20

- 1. What is phase space?
- 2. Define most probable microstate.
- 3. What is partition function?
- 4. Define the term 'thermodynamic probability'.

(Turn Over)

		((808G	10	11.1	202
	-0055155	118080	12	2 1	
MEEM	1 47.17 8 19				

5. State two properties of thermal radiation.

- 6. State Kirchhoff's law of radiation.
- 7. What do you understand by radiation | Oth Samester | pressure?
- 8. What is ultraviolet catastrophe?
- 9. Explain Planck's quantum postulates.
- 10. Explain Stefan-Boltzmann law.
- 11. What do you understand by Wien's law of energy distribution?
- 12. Describe Rayleigh-Jeans law in brief.
- **13.** State basic assumptions of two Bose-Einstein statistics.
- 14. What do you mean by photon gas?
- 15. What is liquid helium?
- 16. Briefly explain Bose-Einstein condensation.
- 17. State two basic assumptions of Fermi-Dirac statistics.

22J/93

(Continued)

18.	What	is	electron	gas?
-----	------	----	----------	------

- 19. Explain in brief about Fermi energy.
- 20. Discuss Chandrasekhar mass limit.

SECTION—B

Answer any five questions:

6×5=30

2

2

- 21. (a) Define and explain the terms 'macrostate' and 'microstate' with examples.
 - (b) State the law of equipartition of energy.
- 22. (a) What is ensemble? Distinguish among microcanonical, canonical and grand 1+3=4canonical ensembles.
 - (b) Explain Gibbs' paradox in brief.
- 23. What is a black body? What is black-body radiation? Describe how has the idea of a black body been achieved in practice. 11/2+11/2+3=6
- 24. Explain the terms 'emissive power' and 'absorptive power'. Prove that at any temperature the ratio of emissive power to the absorptive power of a substance is constant and is equal to the emissive power of a perfectly black body.

22J/93 1 3131/4

(Turn Over)

25.	(a)	Discuss Planck's law of black body R radiation.
	(b)	Give the experimental verification of Planck's radiation law.
26.	(a)	Starting from Planck's radiation law, deduce Wien's displacement law.
.6L -8 ⊒= ;	(b)	Deduce Rayleigh-Jeans law from Planck's law.
27.	distr	ve the expression for the most probable ribution of particles for a system obeying e-Einstein statistics.
28.	distr	ting from Bose-Einstein energy ribution law, derive Planck's law of k-body radiation.
29.	distr Ferm	ve an expression for the probability ibution of particles governed by ni-Dirac statistics.
0	nits Court	Use Fermi-Dirac statistics to calculate the energy of free electrons inside a metal.
4-3	ergy (A)	Do electrons have zero energy at 0 K? If not, why?
Fred - 1		of a periently black **
22J-	-220 /	2021/TDC(CBCS)/EVEN/SEM/ PHSHCC-602T/097