

## 2020/TDC (CBCS)/ODD/SEM/ PHSHCC-502T/156

# TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

## Isography of the PHYSICS and the bail

(-1, b = 2i + j and c = k

#### (5th Semester)

Course No.: PHSHCC-502T

#### ( Solid State Physics )

Discuss lattice heat capacity.

Full Marks: 50
Pass Marks: 20

Time: 3 hours

Discuss the basic drawbacks of Einstein

The magnetic field strongth in a piece of

The figures in the margin indicate full marks for the questions

#### metal is 10 A-NOITOSE meter. Find the

- 1. Answer any ten of the following questions:

  2×10=20
  - (a) Define a primitive cell.
  - (b) How many lattice points are there in a unit cell of f.c.c. lattice structure?
  - (c) Find the Miller indices for the planes with intercepts 3a, 3b, 2c along  $\vec{a}$ ,  $\vec{b}$  and  $\vec{c}$  directions.

10-21/144

(Turn Over)

2020/[IZ]CBCS/ODD/SEM/ PHSHCC-S027/156

(d) A three-dimensional lattice has the basis vectors found in blad > £

 $\vec{a} = \hat{i} - \hat{j}, \ \vec{b} = 2\hat{i} + \hat{j} \text{ and } \vec{c} = \hat{k}$ 

Find the basis vectors of the reciprocal lattice.

- (e) State two differences between photons and phonons.
- (f) Discuss lattice heat capacity.
- (g) Explain Dulong and Petit law.
- (h) Discuss the basic drawbacks of Einstein model of specific heat.
- (i) The magnetic field strength in a piece of metal is 10<sup>6</sup> ampere per meter. Find the flux density and the magnetisation in the material. Assume that the magnetic susceptibility of the metal is -0.5×10<sup>-5</sup>.
- (j) Why are ferrites used for high frequency applications?
- (k) Using Hund's rule, calculate the spectroscopic splitting factor (g) for  $Cr^{3+}$ .

(Continued)

(3)

- (1) Why is steel used for making permanent magnet?
- (m) Show that  $P = E \varepsilon_0 (\varepsilon_r 1)$ , where P is second electric polarization.
- For argon gas,  $N=10^{19}$  cm<sup>-3</sup>, z=18 and  $r=10^{-8}$  cm, calculate the electronic polarization for an applied field of  $10^{10}$  kV/cm. (dV) thus according to the man  $10^{10}$  kV/cm.
  - (o) Discuss piezoelectricity. o significa
  - (p) What is meant by complex dielectric constant?
  - (q) Discuss Bloch theorem.
  - (r) From the band theory of solid, explain why the conductivity of semiconductors increases with the increase in temperature.
  - (s) What do you mean by  $H_C$  or the critical field in superconductivity? Also show the variation of  $H_C$  with temperature.
  - (t) Discuss Cooper pairs.

(Turn Over)

10-21/144

10-21/144

(4)

#### SECTION-B

#### Answer any five questions

2 (a) Define atomic packing fraction (or factor). Calculate its value for a simple cubic and face-centred cubic structure.

11+1+

1

Stanasm

- (b) Discuss powder method of X-ray diffraction study. Why is the diameter of Debye-Scherrer camera 57.3 mm or a multiple of it?
- **3.** (a) Why are X-rays used for crystal structure analysis?
  - (b) Derive Bragg's law of crystal diffraction. How does Bragg reflection differ from ordinary reflection? 3+2
- 4. Show that the dispersion relation for the lattice waves in a monoatomic lattice of mass m, spacing a and nearest neighbour interaction C is

$$\omega = 2\sqrt{\frac{C}{m}} \sin \left| \frac{1}{2} \vec{k} a \right|$$

where  $\omega$  is the angular frequency and  $\vec{k}$  is the wave vector. Also calculate the allowed values of the wave vectors and discuss Brillouni zones.

10-21/144

(Continued)

(5)

- 5. Derive lattice specific heat according to Debye's model. Also discuss the high and low temperature limits.
- 6. What are paramagnetic materials? Describe the classical theory of paramagnetism. 1+5
- 7. Derive the Curie-Weiss law of ferromagnetism and obtain the expression for the critical temperature. 4+2
- Deduce Clausius-Mossotti relation and explain its use in predicting the dielectric constant of solids.
- 9. Deduce Langevin-Debye equation. Discuss how this equation may be used to obtain information on molecular structure. 5+1
- 10. (a) Explain the differences between the type-I (soft) and type-II (hard) superconductors.
  - (b) Show that for a superconducting state, both perfect diamagnetic and zero resistivity are two independent properties.

10-21/144

(Turn Over)

2

4

### (6)

| 11.   | (a) Explain the phenomenon of penetration | . 27 |
|-------|-------------------------------------------|------|
|       | of magnetic field in a superconductor     |      |
| 1 + 1 | and also define penetration depth.        | 3    |

(b) Discuss Meissner effect with neat

85. What are paramagnetic materimspheribe
the classical theory of paramagnetism.

Derive the Cante-Weiss law of ferromagnetism and obtain the expression for the critical temperature.

8. Deduce Clausius-Mossorti relation and 4 sexplain its use in predicting the dielectric constant of solids.

P. Deduce Langevin-Debye equation. Discuss tow this equation may be used to obtain information on molecular structure.

3.0. (a) Explain the differences between the type-1 (soft) and type-II (bard) superconductors.

(i) Show that for a superconducting state, both perfect diamagnetic and zero resistivity are two independent properties

2020/TDC (CBCS)/ODD/SEM/ PHSHCC-502T/156