

elEcknon of

2022/TDC/ODD/SEM/ PHSHCC-302T/151

TDC (CBCS) Odd Semester Exam., 2022

2. Answer either ((a) and (b); or [(a) and (d)] ap-

pl soring at (PHYSICS or (M , T)

espansion of an ideal gas from a plant

(Honours)

(3rd Semester)

Course No.: PHSHCC-302T

an odnor of Thermal Physics) Thermal

Full Marks: 50

Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any two questions: 2×2=4
 - (a) State the zeroth law of thermodynamics.
 - (b) Why C_P is greater than C_V ?
 - (c) What do you mean by thermodynamic scale of temperature?

in Herma bi entropy

J23/200

(Turn Over)

(d)

1333

Define Helmholtz free energy and Gibbs'

(Continued)

in terms of entropy.

free energy.

J23/200

2.	Ansv	nswer either [(a) and (b)] or [(c) and (a)].		4.	Answer either [(a) and (b)] or [(c) and (d)]
	(a)	Show that the work done in adiabatic expansion of an ideal gas from a state (P_1, V_1) to a state (P_2, V_2) is given by $W = \frac{1}{\gamma - 1} [P_1 V_1 - P_2 V_2].$	3	A E	(a) Prove that for a complete reversible cycle change in the state of substance ∫ ds = 0. 3
	(b)	A Carnot engine has an efficiency of 20% when the temperature of the sink			(b) State the significance of thermodynamic potential. 3
		is 27 °C. What must be the change in temperature of the source to make its			(c) Discuss in brief the temperature
		efficiency 50%?	3		entropy diagram for Carnot's cycle.
	(c)	State and prove Carnot's theorem.	3		(d) Show that entropy increases in irreversible process.
	(d)	Discuss the equivalence of thermo- dynamic scale of temperature and			Py "Prodition introfer animana" (M. 1
	al v	perfect gas scale.	3		UNIT—III
		Unit—II		5.	Answer any two of the following questions: $2\times2=4$
	Ansv	wer any two of the following questions: 2×2	2=4		(a) Write Four Maxwell's thermodynamic relations.
	(a)	State the concept of entropy.	_11		V. Let 1
	(b)	Give the second law of thermodynamics			(b) What do you mean by Joule-Kelvin coefficient for a van der Waals' gas?
					coefficient for a valider waars gas.

(c) What is first-order phase transition?

(Turn Over)

Give one example.

J23/200

3

3

(44)

- 6. Answer either [(a) and (b)] or [(c) and (d)] : 11
 - (a) Define second-order phase transition and hence derive Ehrenfest's theorem.
 - (b) Establish the following relation:

$$TdS = C_V dT + T \left(\frac{\partial P}{\partial T}\right)_V dV$$

(Here the symbols have their usual meanings)

- (c) Use Maxwell's thermodynamic relations, derive the relation $C_P C_V = R$ (here the symbols have their usual meanings).
- (d) Establish the following relation: 3

$$TdS = C_P dT - T \left(\frac{\partial V}{\partial T}\right)_P dP$$

(Here the symbols have their usual meanings)

UNIT-IV

- 7. Answer any two of the following questions:
 - (a) Define degrees of freedom. Write the law of equipartition of energy.

J23/200 (Continued)

((5;))

- (b) Define specific heats of gases.
- (c) Calculate the RMS speed of oxygen molecules at 27 °C.
- 8. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Using Maxwell-Boltzmann distribution law of velocities, derive an expression for the most probable speed in an ideal gas.
 - (b) What is Brownian motion?
 - (c) Obtain the expression for mean free path

$$\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}$$

where σ is the molecular diameter and n is the number of molecules per unit volume as per the kinetic theory of gases.

(d) Write a short note on viscosity and diffusion.

J23/200 (Turn Over)

ONTH VILLE OF THE PARTY OF THE STATE OF THE

9. Answer any two of the following questions:

 $2 \times 2 = 4$

6

(a) What do you mean by Boyle temperature?

DP VII Dis Priesteine

- (b) State the limitations of van der Waals' equation.
- Define critical constants. M. series of volumes, derive an expression
- 10. Answer either (a) or (b):

(a) Discuss Andrews' experiment on CO₂ gas.

(b) What are critical constants of a real gas? Find the expressions for each of them.

**

where a is the molecular dismater and a is the marker of molecules per unit volume as per the kundid theory of

'Ville a short mote on viscosity and

2022/TDC/ODD/SEM/ PHSHCC-302T/151