

# 2021/TDC/CBCS/ODD/ PHSHCC-301T/150

## TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

#### **PHYSICS**

( 3rd Semester )

Course No.: PHS HCC-301T

( Mathematical Physics—II )

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

### SECTION—A

Answer any ten of the following questions:  $2\times10=20$ 

- Explain what you understand by odd function and even function.
- 2. State whether  $y = \tan x$  can be expressed as a Fourier series. If so, how? If not, why?

(Turn Over)



- 3. State Parseval's identity.
- 4. Explain what you understand by regular and irregular singular points.
- 5. Find the ordinary point and singular point of the differential equation

ferential equation 
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (1 - x)y = 0$$

6. What is the degree and order of the following differential equation?

$$\frac{dy}{dx} = \frac{x^4 - y^4}{(x^2 + y^2)xy}$$

- 7. Write the Rodrigues' formula for Legendre polynomial. What is the orthogonality condition of the Legendre polynomial?
- 8. Prove that  $P_n(1) = 1$ .
- 9. Expand  $J_0(x)$ .
- **10.** Find the value of  $\Gamma\left(\frac{1}{2}\right)$ .
- 11. Prove that beta function  $\beta(m, n)$  is symmetric in m and n.

( 3 )

- 12. Prove that  $\delta(x) = \delta(-x)$ . but I was to make and
- 13. Express Laplace's equation in cylindrical coordinates.
  - 14. Solve

$$\frac{\partial^2 z}{\partial x \partial y} = x^2 y$$

15. Write down two applications of PDE in physics.

#### SECTION-B

Answer any five of the following questions: 6×5=30

- **16.** Find the Fourier series of  $f(x) = x + x^2$  in  $(-\pi, \pi)$ .
- 17. A sawtooth wave is defined as f(x) = x,  $-\pi \le x \le \pi$ . Find the Fourier series of the 6 function.
- 18. Write down Legendre's differential equation and obtain the power series solution for it.
- 19. Discuss Frobenius method of solving a 6 differential equation.

22J/688

(Turn Over)



(4)

- 20. Find the expand of  $J_{1/2}(x)$  using the general expression for Bessel function of first kind.
- 21. Prove the recurrence relations: 3+3=

(i) 
$$xJ'_n(x) = nJ_n(x) - xJ_{n+1}(x)$$

(i) 
$$xJ_n(x) = x[J_{n-1}(x) + J_{n+1}(x)]$$
  
(ii)  $2nJ_n(x) = x[J_{n-1}(x) + J_{n+1}(x)]$ 

- **22.** (a) Prove that  $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ 
  - (b) Show that

$$\beta(m+1, n) = \frac{m}{m+n}\beta(m, n)$$

$$4+2=6$$

- 23. Explain how Dirac delta function can be expressed as a limit of (a) Gaussian function and (b) rectangular function. 3+3=6
- **24.** The displacement y of a viscously damped string is given by

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - 2k \frac{\partial y}{\partial t}$$

Find the general solution of the above equation by the method of separation of variables.

22J/688

(Continued)

5)

25. Solve the boundary value problem

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$

given  $u(0, y) = 8e^{-3y}$ , by the method of separation of variables.

\* \* \*

2021/TDC/CBCS/ODD/ PHSHCC-301T/150

6

22J/688