

2021/TDC/CBCS/ODD/ PHSDSE-501T/157

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

PHYSICS

(5th Semester)

Course No.: PHSDSE-501T

(Classical Dynamics)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any twenty of the following as directed: $1 \times 20 = 20$

- 1. Define centre of mass of a system of particles.
- 2. Can the centre of mass coincide with centre of gravity?
- 3. What do you mean by constrained motion?

(Turn Over)

(25)

- 4. How much is the degree of freedom for
- 5. Whether nuclear force is a central force or not?
- 6. Both Newton's equations and Lagrange's equations are valid only in inertial frames.

 (Write True or False)
- 7. Can you define a Lagrangian uniquely?
- 8. What are generalized coordinates?
- **9.** What is the importance of principle of virtual work?
- 10. Define virtual displacement.
- 11. Define canonical momenta.
- 12. Can you define Hamiltonian uniquely?
- 13. When does Hamiltonian equal to total energy of a system?

(3)

- What is the order of Hamilton's equation of motion?
- 15. If one represents a central force as $\vec{F} = F(r)\hat{r}$, then the force is attractive, if
 - (a) F(r) < 0
 - (b) F(r) > 0
 - (c) F(r) = 0
 - (d) None of the above (Choose the correct answer)
- 16. What do you mean by small oscillations?
- 17. Do small oscillations occur both in microscopic and macroscopic world?
- 18. What do you mean by state of equilibrium?
- 19. Give an example of metastable equilibrium.
- 20. What is secular equation?
- 21. What is Reynolds number?

22J**/906**

(Turn Over)

(Continued)

(4)

(5)

- 22. Define viscosity of a fluid.
- 23. What do you mean by vortices in connection to fluid motion?
- 24. What is the kinetic origin of viscosity?
- 25. Viscosity is a property of
 - (a) solids only
 - (b) liquids only
 - (c) solids and liquids
 - (d) liquids and gas

(Choose the correct answer)

SECTION-B

Answer any five of the following questions: $2 \times 5 = 10$

- **26.** Show that the centre of mass of a body is a fixed point whatever be the coordinate system used.
- 27. Prove that the aerial velocity of the radius vector of a particle under a central force is constant.

28. Check whether the constraint given by the following equation is holonomic:

$$x dx + y dy + z dz - c^2 t dt = 0$$

- 29. Prove that if Lagrangian of a conservative system does not contain time explicitly, then the total energy is conserved.
- 30. A particle moves in a circular orbit about the origin under the action of a central force

$$\vec{F} = -\frac{K}{r^3}\hat{r}$$

If potential energy is 0 at infinity, find its total energy.

- 31. Explain basic difference between Lagrangian and Hamiltonian formulations in mechanics.
- 32. Define static and dynamic equilibrium.
- 33. Explain the difference between static and stable equilibrium citing one example.
- 34. Briefly compare the viscous properties of a liquid and a gas.
- 35. Explain the importance of Reynolds number.

22J/906

(Continued)

22J/906

(Turn Over)

(6)

SECTION-C

Answer any five of the following questions: 8xx.

- 36. (a) Find the expression of acceleration of centre of mass of a two-particle system.
 - (b) Three particles of masses 50 g, 100 g and 15 g are placed at the vertices of an equilateral triangle of side 1 m. Find the coordinate of centre of mass.
- 37. (a) Show that central force is a conservative force.
 - (b) In an attractive inverse square central field, the equation of motion of a particle is

$$\dot{\vec{p}} = -\left(\frac{k}{r^2}\right)\left(\frac{\vec{r}}{r}\right)$$

Show that the angular momentum (\overrightarrow{L}) is conserved and

$$\vec{p} \times \vec{L} = mk \frac{d}{dt} \left(\frac{\vec{r}}{r} \right)$$

where m is the mass.

2+3=5

(7)

- 38. (a) State Hamilton's principle.
 - (b) Given

$$L = \frac{1}{2}e^{at}(\dot{x}^2 - p^2x^2)$$

where p is a constant. Using Lagrange's equation, prove that

$$\ddot{x} + a\dot{x} + p^2 x = 0 \tag{6}$$

- 39. (a) Find the equation of motion of a simple pendulum using Lagrange's equation.

 Also find its time period. 3+2=5
 - (b) Write down the Lagrangian equation if the Lagrangian has the form $L = -\sqrt{1 \dot{q}^2}$
- 40. (a) Prove that total energy of a particle of mass m acted upon by a central force is given by

$$E = \frac{L^2}{2m} \left[u^2 + \left(\frac{du}{d\theta} \right)^2 \right] + V(r)$$

where V(r) is the potential energy, L is the angular momentum, (r, θ) is the polar coordinate of the particle and $u = \frac{1}{r}$.

(Turn Over)

2

(8)

(b) Prove that

$$\frac{dH}{dt} = \frac{\partial H}{\partial t}$$

where H is the Hamiltonian function

41. (a) Given the Lagrangian

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

Find the Hamiltonian and hence the equations of motion.

- (b) Deduce Hamilton's equations of motion.
- **42.** (a) Explain the following terms:

 Normal frequency and Normal mode
 - (b) Discuss the stability of a simple pendulum and show that it can oscillate about the position of its stable equilibrium.
- **43.** (a) Find the normal frequencies and normal coordinates for the Lagrangian given by

$$L = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}(\omega_1 x^2 + \omega_2 y^2) - \alpha xy$$

22J/906

(Continued)

3

5

(9)

(b) A particle moves in a potential energy given by

$$V(x) = bx^2 + \frac{a}{x^2}$$
; $a, b > 0$

Find its frequency of oscillation.

- Define pressure in a fluid. What is the unit of pressure? Write few properties of pressure in a fluid.

 1+1+2=4
 - (b) Show that the pressure at a depth h in a fluid is equal to the pressure outside the fluid plus the fluid pressure.
- **45.** (a) Explain laminar and turbulent flow of fluids in detail. Give examples too.
 - (b) A water hose with a radius of 1 cm is used to fill a 20 litre bucket. If it takes 1 min to fill the bucket, what is the speed at which the water leaves the hose? (1 litre = 10³ cm³)

2021/TDC/CBCS/ODD/ PHSDSE-501T/157

3

4

22J-600/906