

2022/TDC/ODD/SEM/MTMSEC-501T/333

TDC (CBCS) Odd Semester Exam., 2022

MATHEMATICS

(5th Semester)

Course No.: MTMSEC-501T

(Integral Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any three of the following: 1×3=3

(a) Evaluate:

$$\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$$

(b) What do you mean by integration of a function?

(Turn Over)

http://www.elearninginfo.in

Evaluate:

$$\int \frac{2\sin x}{5 + 3\cos x} dx$$

(d) Show that

$$\int \tan x \, dx = \log |\sec x| + c$$

Evaluate any one of the following:

(a)
$$\int \frac{e^x - 1}{e^x + 1} dx$$

(b)
$$\int \frac{dx}{x^2 \sqrt{1-x^2}}$$

3. Evaluate:

3+2=5

2

(i)
$$\int \cos\left(2\cot^{-1}\sqrt{\frac{1-x}{1+x}}\right)dx$$

(ii)
$$\int \frac{xdx}{(2x+1)^2}$$

Or

Evaluate:

3+2=5

(i)
$$\int \frac{(\log \sec x)^2}{\cot x} dx$$

(ii)
$$\int \frac{\cos^2 x}{\sin^4 x} dx$$

J23/389

(Continued)

(3)

UNIT-II

4. Answer any three of the following: 1×3=3

(a) Express $\int_a^b f(x) dx$ as the limit of a sum.

Write down the geometrical interpretation of $\int_a^b f(x) dx$.

State the fundamental theorem of integral calculus.

(d) What is the value of $\int_0^{2\pi} f(x) dx$, when f(2a-x)=f(x)?

5. Answer any one of the following:

(a) Evaluate $\int_a^b e^{-x} dx$ by the method of summation.

(b) Evaluate:

$$\int_a^b \cos^3\theta \, d\theta$$

6. (a) Evaluate:

 $\operatorname{Lt}_{n\to\infty}\left\{\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right\}$

(b) Find the value of

 $\int_0^1 x(\tan^{-1}x)^2 dx$

(Turn Over)

J23/389

14

4

Or 🤳

(c) Evaluate:

 $\int_{\pi/2}^{\pi/4} \csc^2 x \, dx$

(d) Prove that

Lt
$$n \to \infty$$
 $\frac{1^m + 2^m + 3^m + \dots + n^m}{n^{m+1}} = \frac{1}{m+1}(m-1)$ 3

UNIT-III

- 7. Answer any three of the following: 1×3=3
 - (a) Evaluate: $\int_0^{\pi/2} \sin^2 x \, dx$
 - (b) Show that $\int_a^b f(a+b-x) dx = \int_a^b f(x) dx$
 - (c) Let $S_n = \int_0^{\pi/2} \sin^n x \, dx$ and $T_n = \int_0^{\pi/2} \cos^n x \, dx$. Then show that $S_n = T_n$.
 - (d) Evaluate:

$$\int_0^1 \frac{dx}{x^{2/3}}$$

J23/389

(Continued)

(5)

8. Evaluate any one of the following:

2

(a)
$$\int_0^1 x^6 \sqrt{1-x^2} dx$$

(b)
$$\int_{a}^{b} f(nx) dx = \frac{1}{n} \int_{na}^{nb} f(x) dx$$

9. (a) Prove that

$$\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx = \frac{\pi^2}{4}$$

(b) Show that

$$\int_{-\pi/2}^{\pi/2} \sin^7 x \, dx = 0$$

² 2

Or

(c) Show that

$$\int_0^{\pi/2} \log \sin x \, dx = \frac{\pi}{2} \log \frac{1}{2}$$

(d) Prove that

$$\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2$$

UNIT-IV

10. Answer any three of the following:

1×3=3

(a) What is the length of the curve x = f(y) from y = c to y = d?

J23/389

(Turn Over)

- Write the parametric equation of an hyperbola $\frac{\hat{x}^2}{a^2} - \frac{y^2}{h^2} = 1$.
- Write down the equation of an asteroid.
- What is the perimeter of a semicircle?
- 11. Answer any one of the following:

Show that complete perimeter of the

$$x = \frac{1-t^2}{1+t^2}$$
; $y = \frac{2t}{1+t^2}$

- (b) Write down the equations of cardioid with diagram.
- 12. Sketch the diagram of the curve

$$\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$$

and find its perimeter.

Find the length of the arc of the curve $x = e^{\theta} \sin \theta$; $y = e^{\theta} \cos \theta$

from
$$\theta = 0$$
 to $\theta = \frac{\pi}{2}$.

(Continued)

5

- 13. Answer any three of the following:

 $1 \times 3 = 3$

- What is the area of the curve bounded by the curve and the radii vector $\theta = \alpha$ and $\theta = \beta$?
- Write down the volume of a cylinder of height h and base radius r.
- What is the volume of a sphere generated by $x^2 + y^2 = 9a^2$? the rotation of circle
- (d) What is the area of a circle of radius r?
- 14. Answer any one of the following:
- 2
- (a) Find the area of the segment of the parabola y = (x-1)(4-x) cut off by the x-axis.
- Find the volume of $y = \sin x$ bounded by the curve and lines x = 0, $x = \pi$.
- 15. Prove that the surface and the volume of the ellipsoid formed by the revolution of $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ round its major axis are $2\pi ab \left\{ \sqrt{1-e^2} + \frac{1}{e} \sin^{-1} e \right\}$ and $\frac{4}{3}\pi ab^2$.

J23/389

(Turn Over)

5

J23/389

(8)

Or

Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the square bounded by x = 0, x = 4, y = 0, y = 4 into three equal areas.

But and Supplied to the region of the Administration of the Admini

(d) Vitatile the since a last resided fulfille a

gare Grand Carlo Copy of Selection (1) A Copy of Sel

stores in a common to be and achieveness.

artered the hear far-App expert stock cong

heriotza, i tako Marti et etakitak

2022/TDC/ODD/SEM/ MTMSEC-501T/333

5