2020/TDC(CBCS)/ODD/SEM/

MTMSEC-501T/333D

TDC (CBCS) Odd Semester Exam., 2020
held in March, 2021
MATHEMATICS
(5th Semester)
Course No. : MTMSEC-501T

(Integral Calculus)

$\frac{\text { Full Marks : } 50}{\text { Pass Marks : } 20}$
Time : 3 hours
The figures in the margin indicate full marks for the questions
SECTION—A

Answer any fifteen questions :
$1 \times 15=15$

1. Write down the value of

$$
\int \frac{f^{\prime}(x)}{f(x)} d x
$$

2. Write down the value of

$$
\int \frac{d x}{x^{2}+a^{2}}
$$

10. Find

$$
\int_{-1}^{0}|x| d x
$$

11. Find the value of

$$
\int_{-a}^{a} x \phi\left(x^{2}\right) d x
$$

12. Express $\int_{a}^{b} f(x) d x$ as limit sum.
13. Write down the reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x$, when n is odd.
14. Write down the reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x$, when n is even.
15. Write True or False :

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

16. Find the value of $\int_{0}^{\pi / 2} \sin ^{4} x d x$ by using reduction formula.
17. If $\phi(n)=\int_{0}^{\pi / 4} \tan ^{n} x d x$, what is the value of $\phi(n)+\phi(n-2) ?$
18. Write down the reduction formula for $\int \sec ^{n} x d x$.
19. Write down the geometrical interpretation of $\int_{a}^{b} f(x) d x$.
20. Write down the parametric equation of circle $x^{2}+y^{2}=r^{2}$.
21. Write down the parametric equation of astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
22. Write down the formula of length in Cartesian form.
23. Write down the formula of length in parametric form.
24. What is the length of circumference of a circle of radius a ?
25. What is the surface area of the sphere of radius a ?
26. What is the volume of the solid generated by the curve $y=f(x)$, intercepted between $x=a$ and $x=b$ and the axis of revolution about x-axis?
27. What is the surface area of the solid generated by the curve $x=f(y)$, intercepted between $y=a$ and $y=b$ and the axis of revolution about y-axis?
28. What is the volume of the sphere generated by the rotation of the circle $x^{2}+y^{2}=4 a^{2}$?
29. What is the volume of the solid generated by the revolution of the area bounded by the curve $r=f(\theta)$ and radii vectors $\theta=\theta_{1}$, $\theta=\theta_{2}$ and revolution about initial line $\theta=0$?
30. What is the volume of a paraboloid of revolution formed by revolving the parabola $y^{2}=4 a x$ about the x-axis and bounded by the section $x=h$?
SECTION—B

Answer any five questions :

$$
2 \times 5=10
$$

31. Evaluate :

$$
\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x
$$

32. Evaluate:

$$
\int \frac{e^{\sqrt{x}} \cos \left(e^{\sqrt{x}}\right)}{\sqrt{x}} d x
$$

SECTION-C

Answer any five questions :
$5 \times 5=25$
41. Evaluate :

$$
\int(\sqrt{\tan x}+\sqrt{\cot x}) d x
$$

42. Evaluate :

$$
\int \frac{d x}{x^{4}+a^{2}}
$$

43. Prove that

$$
\int_{0}^{\pi / 2} \log (\sin x) d x=\frac{\pi}{2} \log \frac{1}{2}
$$

44. Evaluate :

$$
\lim _{n \rightarrow \infty}\left[\left(1+\frac{1^{2}}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \cdots\left(1+\frac{n^{2}}{n^{2}}\right)\right]^{1 / n}
$$

45. If $u_{n}=\int_{0}^{\pi / 2} x^{n} \sin x d x, n>1$, then prove that $u_{n}+n(n-1) u_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$.
46. If $I_{m, n}=\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x ; m, n$ being positive integers greater than 1 , then prove that

$$
I_{m, n}=\frac{n-1}{m+n} I_{m, n-2}
$$

47. Find the total length of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
48. Find the length of an arc of the cycloid $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$.
49. Find the area of the surface generated by the arc of the parabola $y^{2}=4 a x$ bounded by its latus rectum about x-axis.
50. Find the volume of the ellipsoid by the revolution of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

about the major axis.

