

2022/TDC/ODD/SEM/ MTMHCC-502T/330

TDC (CBCS) Odd Semester Exam., 2022

go a girtu pagetarrai and no (D. A)

MATHEMATICS (Honours)

(5th Semester)

Course No.: MTMHCC-502T

(Multivariate Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following questions:

 $2 \times 2 = 4$

(a) Show that

$$\lim_{(x, y)\to(0, 0)} \frac{2xy^2}{x^2 + y^4}$$

does not exist.

(2)

- (b) Find the directional derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of u = 3i 4j.
- (c) Find the gradient of the function $f(x, y, z) = \log_e(x^2 + y^2 + z^2)$ at the point (1, 2, 1).

Answer either Question No. 2 or 3:

10

2. (a) Let

$$f(x, y) = \begin{cases} x \sin(\frac{1}{y}) + y \sin(\frac{1}{x}), & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

Show that the repeated limits of f do not exist whereas limit exists at (0, 0).

(b) Show that the function

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is continuous at the origin.

5

J23/386

(Continued)

(3)

3. (a) If

$$f(x, y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & x \neq y \\ 0, & x = y \end{cases}$$

show that f is discontinuous at the origin but possesses partial derivatives f_x and f_y at the origin.

(b) Let f(x, y) be a function and $(a, b) \in \text{domain}(f)$ such that one of the partial derivatives f_x and f_y exists and is bounded in a neighbourhood of (a, b) and the other exists at (a, b). Prove that f(x, y) is continuous at (a, b).

UNIT-II

Answer any two of the following questions:

2×2=4

5

- (a) Show that $f(x, y) = y^2 + x^2y + x^4$ has a minimum at (0, 0).
- (b) Show that the function $f(x, y) = 2x^4 3x^2y + y^2$ has neither a maximum nor a minimum at (0, 0).
- (c) Give an example of a function f(x, y) having an extreme value at (0, 0) even though the partial derivatives f_x and f_y do not exist at (0, 0).

J23/386

(Turn Over)

(.4)

Answer either Question No. 5 or 6:

- (a) Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions $\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$ and z = x + y.
 - (b) Prove that the volume of the greatest rectangular parallelopiped, that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is $\frac{8abc}{3\sqrt{3}}$.

5

10

6. (a) Show that the length of the axes of the section of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

by the plane lx+my+nz=0 are the roots of the quadratic in r^2

$$\frac{l^2a^2}{r^2-a^2} + \frac{m^2b^2}{r^2-b^2} + \frac{n^2c^2}{r^2-c^2} = 0$$

J23/386 n

(Continued)

(5)

(b) Show that if 2x+3y+4z=a, the maximum value of $x^2y^3z^4$ is $\left(\frac{a}{9}\right)^9$.

5

UNIT-III

7. Answer any *two* of the following questions: $2 \times 2 = 4$

(a) Find the curl of $\vec{F} = (x^2 - z)i + xe^z j + xyk$

- (b) Define divergence of a vector field at a point. Find the divergence of $\vec{F}(x, y) = \frac{-y}{x^2 + y^2} i + \frac{x}{x^2 + y^2} j$ at all the points in the domain.
- (c) Evaluate $\iint (x^2 + y) dx dy$ over the rectangle [0, 1; 0, 2].

Answer either Question No. 8 or 9:

8. (a) Evaluate $\iint_{R} (y-2x) dx dy$ over R = [1, 2; 3, 5].

J23/386 (Turn Over)

(16)

(b) Prove that

$$\int_0^1 dx \int_0^1 \frac{x - y}{(x + y)^3} dy = \frac{1}{2} \text{ and}$$

$$\int_0^1 dy \int_0^1 \frac{x - y}{(x + y)^3} dx = -\frac{1}{2}$$
5

- 9. (a) Find $\iint y dx dy$ over the part of the plane bounded by the line y = x and the parabola $y = 4x x^2$.
 - (b) By changing to polar coordinates, show that $\iint_E \sqrt{x^2 + y^2} \, dx \, dy = \frac{38\pi}{3}$, where E is the region in the xy-plane bounded by $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.

UNIT-IV

10. Answer any two of the following questions:

 $2 \times 2 = 4$

5

- (a) Evaluate $\int_0^1 dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_0^a dz$ by passing over to cylindrical coordinates.
- (b) Change the order of the integration $\int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy$

J23/386

(Continued)

(7 7

- (c) Evaluate the line integral $\int xy dx$, where C is the arc of the parabola $x = y^2$ from (1, -1) to (1, 1).
- Answer either Question No. 11 or 12:
- 11. (a) Compute $\iiint_E xyz dx dy dz$, where E is bounded by x = 0, y = 0, z = 0 and x + y + z = 1.
 - (b) Evaluate $\int_C (x-y)^3 dx + (x-y)^3 dy$, where C is the circle $x^2 + y^2 = a^2$ in the counter-clockwise direction.
- 12. (a) Find the volume cut from a sphere of radius a by a right circular cylinder with b as radius of the base and whose axis passes through the centre of the sphere.
 - (b) Show that

$$\int_C (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz = -2\pi ab^2$$

where the curve C is the part for which $z \ge 0$ of the intersection of the

J23/386

(Turn Over)

5

5

5

5

(48))

surfaces $x^2 + y^2 + z^2 = 2ax$, $x^2 + y^2 = 2bx$ a > b > 0, the curve begins at the origin and runs at first in the positive octant.

UNIT-V

- 13. Answer any two of the following questions:
 - (a) Evaluate the line integral $\int (x^2 dx + xy dy)$ taken along the line segment from (1, 0) to (0, 1).
 - (b) State Stokes' theorem.
 - (c) State Green's theorem in \mathbb{R}^2 .

Answer either Question No. 14 or 15:

- 14. (a) Verify Green's theorem in the plane for $\int (xy+y^2)dx+x^2dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$. 5
 - (b) Use Stokes' theorem to find the line integral $\int x^2 y^3 dx + dy + z dz$, where C is the circle $x^2 + y^2 = a^2$, z = 0. 5

(Continued) J23/386

(9)

Evaluate the surface integral

$$\iint_{S} x \, dy \, dz + dz \, dx + xz^{2} \, dx \, dy$$

where S is the outer part of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

5

5

(b) Use Gauss divergence theorem to evaluate

$$\iint_{S} y^2 z dx dy + xz dy dz + x^2 y dz dx$$

where S is the outer side of the surface in the first octant formed by the paraboloid of revolution $z = x^2 + y^2$, cylinder $x^2 + y^2 = 1$ and the coordinate planes.

J23-250/386

2022/TDC/ODD/SEM/ MTMHCC-502T/330