2023/TDC(CBCS)/ODD/SEM/ MTMHCC-502T/311

TDC (CBCS) Odd Semester Exam., 2023

MATHEMATICS

(Honours)

(5th Semester)

Course No.: MTMHCC-502T

(Multivariate Calculus)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer ten questions, selecting two from each Unit: 2×10=20

UNIT-I

1. Show that

$$\lim_{(x, y)\to(0, 0)} \frac{\sqrt{x^2y^2 + 1} - 1}{x^2 + y^2} = 0$$

- 2. If $f(x, y) = \sqrt{|xy|}$, find $f_x(0, 0)$ and $f_y(0, 0)$.
- 3. Find the tangent plane to the surface $z = x\cos y ye^x$ at (0, 0, 0).

UNIT-II

4. Find the local extreme values of

$$f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$$

5. Find the critical points of the function

$$f(x, y) = 10xye^{-(x^2+y^2)}$$

and identify saddle point, if any.

6. Give an example with justification of a function f(x, y) which has an extreme value at a point even though the partial derivatives f_x and f_y do not exist thereat.

UNIT-III

- 7. Define divergence of a vector field. Find the divergence of $\vec{F}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$.
- 8. Find the curl of $\vec{F} = (x^2 z)\hat{i} + xe^z\hat{j} + xy\hat{k}$.
- 9. Evaluate $\iint y dxdy$ over the part of the plane bounded by the lines y = x and the parabola $x^2 + y = 4x$.

UNIT-IV

10. Find the value of

$$\int_C \{(x+y^2) \, dx + (x^2 - y) \, dy\}$$

taken in the clockwise sense along the closed curve C formed by $y^3 = x^2$ and the chord joining (0, 0) and (1, 1).

11. Compute the integral

over a domain bounded by x = 0, y = 0, z = 0, x + y + z = 1.

12. Evaluate the integral

$$\int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{\alpha} dz$$

by passing over to cylindrical coordinates.

UNIT-V

- 13. Define surface integral of the second type.
- 14. Using the line integral, compute the area of the loop of Descarte's folium $x^3 + y^3 = 3axy$.
- 15. State Gauss' divergence theorem.

24J/311

Continued)

(Turn Over)

SECTION-B

Answer five questions, selecting one from each 10×5=50 Unit:

UNIT-I

16. (a) Show that the simultaneous limit and both the repeated limits exist when $(x, y) \rightarrow (0, 0)$ for the function

$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Show that the function f is continuous

at the origin, where
$$f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

17. (a) Show that the function

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = 0 = y \end{cases}$$

possesses first partial derivatives everywhere, including the origin, but the function is discontinuous at the

State and prove a sufficient condition for a function f(x, y) of two variables to be continuous at a point (a, b).

UNIT-II

(a) Find the shortest distance from the origin to the hyperbola

$$x^2 + 8xy + 7y^2 = 225, z = 0$$
 5

Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions

$$\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$$
and $z = x + y$.

Prove that the volume of the greatest rectangular parallelopiped, that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is
$$\frac{8abc}{3\sqrt{3}}$$
.

If $xyz = a^2(x+y+z)$, then show that the minimum value of xy+yz+zx is $9a^2$. 5

24J/311

(Turn Over)

5

(Continued)

UNIT—III

- 20. (a) Evaluate $\iint (y-2x) dxdy$ over the rectangle R = [1, 2; 3, 5].
 - (b) Evaluate $\iint_E x^{m-1} y^{n-1} (1-x-y)^{p-1} dxdy, \ m \ge 1, \ n \ge 1, \ p \ge 1$

where E is the region bounded by x = 0, y = 0, x + y = 1.

21. (a) Evaluate

$$\iiint \sqrt{\frac{a^2b^2 - b^2x^2 - a^2y^2}{a^2b^2 + b^2x^2 + a^2y^2}} \, dx dy$$

over the positive quadrant of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(b) Evaluate:

$$\int_0^\pi \int_0^\pi |\cos(x+y)| dxdy$$

UNIT-IV

22. (a) Compute the volume of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

24J/311

(Continued)

(b) Evaluate

$$\iiint\limits_E (y^2z^2+z^2x^2+x^2y^2)\,dxdydz$$

taken over the domain bounded by the cylinder $x^2 + y^2 = 2ax$ and the cone $z^2 = k^2(x^2 + y^2)$.

23. (a) Show that

 $\int (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz = -2\pi ab^2$

(b) Compute

$$\iiint \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}} \, dx dy dz$$

taken over the region $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.

UNIT-V

- **24.** (a) State and prove Green's theorem in the plane R^2 .
 - (b) Evaluate

$$\iint_{S} (x\cos\alpha + y\cos\beta + z^2\cos\gamma) dS$$

where S denotes the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane z = 1; and $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are direction cosines of the outward drawn normal of S.

(Turn Over)

5

5

24J/311

25. (a) Show that

$$\iint\limits_{S} (y-z) dy dz + (z-x) dz dx + (x-y) dx dy = a^{3}\pi$$

where S is the portion of the surface $x^2 + y^2 - 2ax + az = 0$, $z \ge 0$.

5

5

(b) Evaluate

$$\iint\limits_{S} (x \, dy dz + dz dx + xz^2 dx dy)$$

where S is the outer side of the part of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.