

2022/TDC/ODD/SEM/ MTMHCC-501T/329

TDC (CBCS) Odd Semester Exam., 2022

MATHEMATICS

(Honours)

(5th Semester)

Course No.: MTMHCC-501T

(Topology)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

tag at a Garage Unit—I

1. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) Let (X, d) be a metric space and x, y, z be any three points of X. Then prove that $d(x, y) \ge |d(x, z) d(z, y)|$.
- (b) Let (X, d) be a discrete metric space.

 Describe open sets for d.
- (c) Prove that in a metric space (X, d), for $A, B \subset X$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

(Turn Over)

(2)

2.	Answer any one of the following questions:					
	(a)	(i) Let (X, d) be a metric space and let $d^*: X \times X \to \mathbb{R}$ be defined by				
		$d^*(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$				

Prove that (X, d^*) is a metric space. (ii) Let (X, d) be a metric space and $A \subset X$. Prove that int A, the interior

of A, is the largest open set contained in A.

(b) (i) Let (X, d) be a metric space and let $\{G_i : 1 \le i \le n, n < \infty\}$ be a finite collection of closed sets in X. Prove that $\bigcup_{i=1}^{n} G_i$ is also a closed set in X.

Give an example to show that union of an infinite collection of closed sets in a metric space is not necessarily closed.

3+2=5

(ii) Prove that a subset A of a metric space X is closed iff it contains all its limit points.

UNIT-II

3. Answer any two of the following questions:

 $2 \times 2 = 4$

5

(a) Define a Cauchy sequence in a metric space (X, d) and give an example.

J23/385 (Continued)

(3)

(b) Define a complete metric space. Give an example of a metric space which is not complete.

(c) Prove that if a Cauchy sequence in a metric space has a convergent subsequence, then the sequence is convergent.

4. Answer any one of the following questions:

(a) (i) Let (X, d) be a metric space and let Y be a subspace of X. Prove that
 Y with the induced metric d|Y is complete iff Y is closed in (X, d).

(ii) Let (X, d) and (Y, ρ) be metric spaces. Prove that a function $f: X \to Y$ is continuous at $x_0 \in X$ if and only if for every sequence (x_n) in X converging to x_0 , the sequence $(f(x_n))$ in Y converges to $f(x_0)$.

(b) (i) Let C[0, 1] be the set of all the real-valued continuous functions defined on [0, 1]. Prove that (C[0, 1], d) is a complete metric space, where d is defined as

 $d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|, \ \forall \ f, g \in C[0, 1]$

(Turn Over)

10

J23/385

((41)

(ii) Let X and Y be metric spaces and let A be a non-empty subset of X. If f and g are continuous functions of X into Y such that f(x) = g(x), $\forall x \in A$, then prove that f(x) = g(x), $\forall x \in \overline{A}$.

5

UNIT-III

- **5.** Answer any *two* of the following questions: $2\times 2=$
 - (a) Let (X, τ) be a topological space, where $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Find all the closed sets in X.
 - (b) Let X be any non-empty set and let $\tau = \{\phi, A, B, X\}$, where A and B are non-empty distinct proper subsets of X. Find for what conditions A and B must satisfy in order that τ may be a topology for X.
 - (c) In the topological space (\mathbb{R}, u) , where u is the usual topology on \mathbb{R} , prove that every open interval is an open set.

((5))

- 6. Answer any one of the following questions:
 - (a) (i) Let τ be the collection of subsets of N consisting of empty set ϕ and all subsets of the form $G_m = \{m, m+1, m+2, \cdots\}, m \in \mathbb{N}.$ Show that τ is a topology on N. What are the open sets containing 5?
 - (ii) Define cofinite topology on an infinite set X and prove that it is in fact a topology on X. 1+4=5
 - (b) (i) Let {τ_λ: λ∈ Λ}, where Λ is an index set, be a collection of topologies on X. Prove that ∫ {τ_λ:λ∈Λ} is also a topology on X. Is the union of two topologies on a set is always a topology on X? Justify. 3+2=5
 - (ii) Define discrete and indiscrete topological spaces. Give an example of a topological space other than the discrete and indiscrete spaces in which open sets are exactly same as the closed sets with complete justification.

 2+3=5

(Continued)

J23/385

(Turn Over)

J23/385

with Bill Contains

UNIT—IV

7.	Answer	any	two of	the foll	owing	questions	. N
		TO XF	He Hip	11 11	Place 2	10	$2 \times 2 = 4$

- (a) Define a Hausdorff space and give an example.
- Let A and B be two subsets of a topological space X. If $A \subseteq B$, then prove that $D(A) \subseteq D(B)$, where D(A)represents the derived set of A.
- Find the interior, exterior and boundary of the set (0, 1) in (\mathbb{R}, u) , where u is the usual topology on R.
- Answer any one of the following questions:
 - (a) (i) Prove that every metric d on a non-empty set X induces a topology τ_d on X. Give an example of a topological space with justification which is not metrizable.
 - (ii) Show that every discrete topological space is Hausdorff. Give an example of a Hausdorff space which is not discrete. 4+1=5

(Continued)

(i) If A is a subset of a topological space, then prove that $\overline{A} = A \cup D(A)$.

(ii) Let (X, τ) be a topological space and let A be a subset of X. Prove that \overline{A} is the smallest closed set containing A.

UNIT-V

9. Answer any two of the following questions:

10

- (a) Define a convergent sequence in a topological space. Give an example of a sequence in a topological space which has multiple limits.
- Define a continuous function from a topological space (X, τ_1) to another topological space (Y, τ_2) .
- Prove that a function from a discrete space to any topological space is continuous.
- 10. Answer any one of the following questions:
 - (i) Let \u03c4 denote the discrete topology on a non-empty set X. Show that a sequence (x_n) in (X, τ) is convergent iff there exists $x_0 \in X$ and there exists $N \in \mathbb{N}$ such that $x_n = x_0 \ \forall \ n \ge N.$

J23/385 (Turn Over)

J23/385

18 K.

(b)

(ii)	Prove that a function f from
	a topological space X into another
E.	topological space Y is continuous
. 7	if and only if $f(\overline{A}) \subset \overline{f(A)}$, for every
e e	$A\subset X$. The section of the section A
(i)	Let τ_f and u denote the cofinite
-()	topology and the usual topology
	respectively on R. Show that the
	function $i: (\mathbb{R}, u) \to (\mathbb{R}, \tau)$ given by
	it)
	$i(x) = x \ \forall \ x \in \mathbb{R}$, is continuous.

(ii) Prove that in a Hausdorff space, a convergent sequence has unique limit.

a begalegies), spare uX

nach reimarha zurkrkuma a soutvil

From that a lancing from a diserc

. Latinos sing gons and double

5

5

5

TO CARRETT AND REPORTED BY SEPARATE OF THE PROPERTY OF THE SERVICE OF THE SERVICE

Alegar Areals the spagnerments of a particular and a second disputer of the second disputer