

2020/TDC(CBCS)/ODD/SEM/ MTMHCC-501T/331

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS MATHEMATICS

(5th Semester)

de apace has only unitely

Course No.: MTMHCC-501T

(Topology)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- **1.** Answer any *ten* of the following questions : $2 \times 10 = 20$
 - (a) Define a metric space with example.
 - (b) Show that every open set in a metric space is a union of open spheres.
 - (c) Show that a set A in a metric space is closed iff $A = \overline{A}$.

- (d) Give an example of a non-empty collection of non-empty open sets whose intersection is closed.
- (e) Prove that any convergent sequence in a discrete metric space has only finitely many distinct terms.
- Justify whether (0, 1) with the usual metric d(x, y) = |x - y| is complete.
- (g) Check if the function $f: (\mathbb{R}, u) \to (\mathbb{R}, d)$ $f(x) = x \ \forall x \in \mathbb{R}$ defined by continuous. Here, u is the usual metric on \mathbb{R} and d is the discrete metric on \mathbb{R} .
- (h) Define convergence of a sequence in a metric space.
- Define co-finite topology on a non-empty set X. What happens if X is finite?
- Give example to justify that arbitrary union of closed sets in a topological space need not be closed.
- (k) Define two topologies on the set $X = \{1, 2, 3, 4\}$ such that one is weaker than the other.
- Define relative topology.

((3:)

- Justify whether the union of two topologies on a set is a topology.
- If A and B are sets in a topological space X, show that $A \subseteq B \Rightarrow \overline{A} \subseteq B$.
- Show that in any topological space A is open $\Leftrightarrow A = int(A)$
- Define limit point and boundary point of a set in a topological space.
- Define convergence of a sequence in a topological space. Give example to show the non-uniqueness of limit.
- (r) Define continuity of a function in topological space. Give an example.
- Show that any function from a discrete any to topological space topological space is continuous.
- Let c be the co-finite topology on $\mathbb R$ and u be the usual topology on \mathbb{R} . Check if the function $f: (\mathbb{R}, c) \to (\mathbb{R}, u)$ defined by $f(x) = x \ \forall x \in \mathbb{R}$ is continuous.

10-21/236

(4)

SECTION—B Answer any five questions

2. (a) Let (X, d) be a metric space. Let \overline{d} be defined by

$$\overline{d}(x, y) = \frac{d(x, y)}{1 + d(x, y)} \ \forall \ x, \ y \in X$$

Show that (X, \overline{d}) is a metric space.

- (b) Show that arbitrary union of open sets in a metric space is open. Justify if the same is true for intersection.

 4+1=5
- 3. (a) Show that any finite set in a metric space is closed.
 - (b) Let A and B be subsets of a metric space X. Prove that—

(i) $int(A) \cup int(B) \subseteq int(A \cup B)$

(ii) $int(A) \cap int(B) = int(A \cap B)$

Give example to show that

10-21/236

 $\operatorname{int}(A) \cup \operatorname{int}(B) \neq \operatorname{int}(A \cup B)$

in general. 1+2+1=4

(c) Describe all the open spheres in a discrete metric space.

(Continued)

5

(5)

4.	(a)	Prove the uniqueness of the limit of a convergent sequence in a metric space.	4
	(b)	Let X be a complete metric space and let Y be a subspace of X. Show that Y is complete iff Y is closed.	6
5.	(a)	Let X and Y be metric spaces and $f: X \to Y$. Then prove that f is continuous at $x_0 \in X$ if and only if for every sequence $\langle x_n \rangle$ in X converging to x_0 , the sequence $\langle f(x_n) \rangle$ converges to $f(x_0)$.	6
	(b)	Show that every convergent sequence in a metric space is Cauchy.	4
6.	(a)	Let X be a non-empty set and $x \in X$ be a point. Let T be the collection consisting of ϕ and all those subsets of X that contain x . Show that T is a topology on X .	5
	(b)	Define co-countable topology on a set and show that it is a topology.	.0
7 .	(a)	Describe all the closed sets in a co-finite topology and in a co-countable topology.	3
	(b)	Let T be the collection consisting of $\mathbb N$ and all its finite subsets. Justify if T is a	

2

(Turn Over)

topology on N.

10-21/236

(6)

	ID	4
	(c) Define lower limit topology on R. Establish that it is a topology.	5
7		
	(a) If T_1 and T_2 be two topologies on a non-	
8.	(a) If T_1 and T_2 be two topological empty set X , then show that $T_1 \cap T_2$ is	
A	empty set X, then show that I	5
	also a topology on X .	
	(b) Show that every metric space is a	
	(b) Show that every metric of	5
	Hausdorff space.	
_	(a) Let A and B be any two sets in a	
9.	topological space X. Show that	
	topological space $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Give	
	an example to show that in general	
	an example to show that in $3+1+$	1=5
	$\overline{A} \cap \overline{B} \neq \overline{A \cap B}.$ 3+1+	- 0
	(b) Show that the following are equivalent:	- 5
	(i) int(A) is the union of all open	
	subsets of A	
	(ii) int(A) is the largest open subset of A	
	(10) 1110(13) 10 0110 1118	
10.	(a) Let $f: X \to Y$ be a map from one	
2	topological space into another. Show	
	that f is continuous iff $f^{-1}(F)$ is closed in	
		T
	X whenever F is closed in Y .	5
	at it wis a Handorff ange then show	
	(b) If X is a Hausdorff space, then show	
	that the limit of a convergent sequence	_
	is unique.	5

10-21/236

(7

11. (a) Let f be a bijection from a topological space to another. Show that f is homeomorphism iff both f and f^{-1} are continuous.

(b) Let X, Y, Z be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous, show that $g \circ f: X \to Z$ is continuous.

5

* * *

2020/TDC(CBCS)/ODD/SEM/ MTMHCC-501T/331

10-21—230**/236**

(Continued)