

2023/TDC/CBCS/EVEN/SEM/ MTMHCC-401T/031

TDC (CBCS) Even Semester Exam., 2023

MATHEMATICS

(Honours)

(4th Semester)

Course No.: MTMHCC-401T

(Numerical Methods)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: 2×10=20

- 1. Define relative, absolute, round-off and truncation errors.
- 2. Compute $\Delta^3(1-2x)(1-3x)(1-4x)$.
- 3. Prove that $\mu = \left(1 + \frac{\delta^2}{4}\right)^{1/2}$.

J23/665

(Turn Over)

- 4. Define interpolation.
- 5. Construct a forward difference table for $f(x) = x^3 + 2x + 1$, taking x = 1, 2, 3, 4.
- 6. If $f(x) = x^2$, then find the value of $\Delta^3 f(x)$.
- 7. Write the general quadrature formula for numerical integration.
- 8. What is the geometrical significance of trapezoidal rule?
- 9. What is the geometrical significance of Simpson's \(\frac{3}{8} \text{th rule} \)?
- 10. Write the advantages of Newton-Raphson method.
- 11. Explain the geometrical significance of regula-falsi method.
- 12. When can the bisection method be used to find the root of the equation f(x) = 0?
- 13. Explain about pivoting.
- 14. What is diagonally dominant matrix?
- 15. Write the sufficient conditions for the convergence of Gauss-Seidel method.

SECTION—B

Answer any five of the following questions: 6×5=30

- 16. (a) Round off the numbers 865250 and 37.46235 to four significant digits and compute the absolute and relative errors in each case.
 - (b) Find the absolute error and relative error in $\sqrt{6} + \sqrt{7} + \sqrt{8}$ correct to 4 significant digits.
- 17. (a) Prove that $\Delta \nabla = \Delta \nabla = \delta^2$. 3
 (b) Define the shift operator E and show
 - (b) Define the shift operator E and show that $E = 1 + \Delta = e^{hD}$, where the interval of difference is h.
- **18.** Derive Newton's forward difference interpolation formula.
- 19. (a) State Lagrange's interpolation formula. (b) Find the unique polynomial P(x) of degree 2 or less such that P(1) = 1,
 - degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 64 by using Lagrange's interpolation formula and also evaluate P(1.5).
- 20. State Newton-Cotes quadrature formula and deduce Simpson's $\frac{1}{3}$ rd rule for evaluating the integral

$$\int_{x_0}^{x_0+nh} f(x)dx 2+4=6$$

J23/**665**

(Turn Over)

2

3

6

6

6

21. Evaluate

$$\int_0^1 \frac{x^2}{1+x^3} dx$$

by using (i) trapezoidal rule, (ii) Simpson's $\frac{1}{3}$ rd rule. Also, compare the errors with the exact value. 3+3=6

- 22. Show that Newton-Raphson method has second-order convergence.
- 23. (a) Find the root of the equation $\cos x = xe^x$, by using the regula-falsi method, correct to four decimal places.
 - (b) Write the sufficient condition for convergence of iteration method.
- 24. Solve the following system of linear equations 2x+3y+z=9 x+2y+3z=6 3x+y+2z=8

by Gauss-Jordan method.

25. Consider the system of equations

$$x - ay = b_1$$
$$-ax + y = b_2$$

where a is a real constant. For what values of a, Gauss-Jacobi and Gauss-Seidel methods will converge?

* * *

2023/TDC/CBCS/EVEN/SEM/ MTMHCC-401T/031