2019/TDC/ODD/SEM/MTMHCC-302T/176

TDC (CBCS) Odd Semester Exam., 2019

day ishow that the min M of all connotes

to more absultable to make race

complex auminors, is it then? (3rd Semester)

(a) is bright the permutations -

Course No.: MTMHCC-302T

(Group Theory)

Full Marks: 70 Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any *two* of the following questions: t enouget p grandfort out its out that toward 2x2=4

- (a) Define group with example.
- What do you mean by the order of (b) an element of a group? What is the order of an infinite group?
- (c) Define a semigroup. Is it a group?

20J**/1209**

3+3+1=3

(Turn Over)

- 2. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Show that the set M of all complex numbers z such that |z| = 1 form a group w.r.t. the operation of multiplication of complex numbers. Is it abelian? 4+1=5
 - (b) Consider the permutations

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

Compute f * g, g * f and f^{-1} . 2+2+1=5

- (c) Prove that the set of all nth roots of unity forms a finite abelian group of order n w.r.t. multiplication.
- (d) Define symmetric group. Show that the symmetric group S_3 is non-abelian. What is the order of S_n ? 1+3+1=5

UNIT-II

3. Answer any two of the following questions:

 $2 \times 2 = 4$

5

- (a) What is the index of a subgroup of a group?
- (b) Write two subgroups of \mathbb{Z} under addition.
- (c) Is the union of two subgroups a subgroup? Justify your answer.

4. Answer either [(a) and (b)] or [(c) and (d)]:

- (a) Define inverse of a complex. If H is a subgroup of a group G, then show that $H^{-1} = H$. Also show that the converse is not true.
 - (b) What do you mean by the product of two subgroups of a group? Show that the product of two subgroups H and K of a group G is a subgroup iff HK = KH.

1+4=5

- (c) What is the normalizer of an element of a group? Prove that the centre of a group G is a subgroup of G. 2+3=5
- (d) Prove that the necessary and sufficient condition for a nonempty subset H of a group G to be a subgroup is that $ab^{-1} \in H$, where $a, b \in H$ and b^{-1} is the inverse of b in G.

UNIT-III

5. Answer any two of the following questions:

12×2=4

5

- (a) What are the generators of the cyclic group $\{1, -1, i, -i\}$?
- (b) Define alternating group. What is its order?
- (c) What is the length of an identity permutation? Is it cyclic?

20J/1209

(Turn Over)

20J/1209

(Continued)

http://www.elearninginfo.in (5

- 6. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Define a cyclic group. How many generators are there of a cyclic group of order 8?
- (b) When are two cyclic permutations said to be disjoint? Give an example to show that the product of two disjoint cyclic permutations on a set commute with each other. 2+3
- (c) Prove that
 - every group of prime order is cyclic;
 - (ii) if a is a generator of a cyclic group G, then a^{-1} is also a generator of G. 3+2=5
 - (d) What do you mean by even and odd permutations? Give one example of each. Is the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ odd or even? 2+2+1=5

UNIT-IV

7. Answer any *two* of the following questions:

 $2 \times 2 = 4$

- (a) Define a factor group.
- (b) Define normal subgroup with example.
- (c) Define simple group and give an example of it.

(Continued)

20J/1209

8. Answer either [(a) and (b)] or [(c) and (d)]:

(a) State and prove Lagrange's theorem.

1+4=5

2

- (b) (i) Show that every subgroup of a cyclic group is normal.
 - (ii) Show that the factor group of an abelian group is abelian.
- (c) Define right coset and left coset of a subgroup of a group. When are they same? Show that any two right cosets are either disjoint or identical. 1+1+3=5
- (d) If H and K are two subgroups of a group G and H is normal in G, then prove that HK is a subgroup of G and $H \cap K$ is a normal subgroup of K.

UNIT-V

9. Answer any *two* of the following questions:

2×2=4

5

- (a) What do you mean by group homomorphism?
- (b) Show that the homomorphic image of an abelian group is abelian.
- (c) Let G and G' be two groups and $f: G \to G'$ be a homomorphism. Then show that $f(a^{-1}) = [f(a)]^{-1}$, $\forall a \in G$.

20J**/1209**

(Turn Over)

- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Define kernel of a homomorphism. If $f: G \to G'$ be a homomorphism, then show that kernel of f is a normal subgroup of G. 1+4=5
 - (b) State and prove Cayley's theorem. 1+4=5
- (c) Write down the identity element of a quotient group. Show that any infinite cyclic group is isomorphic to the group of integers under addition.

 1+4=5
 - (d) State and prove the fundamental theorem of homomorphism. 1+4=5

* * *

than do work ment by croup

Steak that the homemorphic image of

2010/TDG/CDD/G