

2022/TDC/ODD/SEM/ MTMHCC-301T/325

TDC (CBCS) Odd Semester Exam., 2022

MATHEMATICS

Honours)

avad of boats (3rd Semester)

Course No.: MTMHCC-301T

(Theory of Real Functions)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

of A. Then pl—TINUs the following age

1. Answer any two of the following questions:

ANGOTO SINGLE LE EL EL SONO SET BASE WITH AN TO HAVE "

 $2 \times 2 = 4$

(a) Show that

serit e nete d'in

$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$$

does not exist in R.

(Turn Over)

J23/228

(2)

(b) Using squeeze theorem, show that

$$\lim_{x\to 0} \left(\frac{\cos x - 1}{x} \right) = 0$$

(c) Give examples of functions f and g such that f and g do not have limits at a point
c, but such that both f + g and fg have limits at c.

Answer either Q.No. 2. or 3.:

2. (a) Let $A \neq \emptyset \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. If $\lim_{x \to c} f$ exists, and if |f| denotes the function defined for $x \in A$ by |f|(x):=|f(x)|, prove that

$$\lim_{\epsilon \to c} |f| = \lim_{x \to c} f$$

(b) Let $f: A \to \mathbb{R}$ and let c be a cluster point of A. Then prove that the following are equivalent:

(i) $\lim_{x\to c} f = L$

(ii) For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $n \in \mathbb{N}$, the sequence $(f(x_n))$ converges to L

(Continued)

5

131

3. (a) Let $A \subseteq R$, let f, g, $h: A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. If $f(x) \le g(x) \le h(x)$, for all $x \in A$, $x \ne c$ and if

 $\lim_{x \to c} f = L = \lim_{x \to c} h$ then prove that

 $\lim_{r\to c} g = L$

THERE

(b) Let $\phi \neq A \subseteq \mathbb{R}$, let $f, g: A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. Suppose that $f(x) \leq g(x)$ for all $x \in A$, $x \neq c$. Prove that

with the (i) if $\lim_{x\to c} f = \infty$, then $\lim_{x\to c} g = \infty$.

(ii) if $\lim_{x\to c} g = -\infty$, then $\lim_{x\to c} f = -\infty$

UNIT-II

4. Answer any two of the following questions:

membrica and sosibute confirment

 $2 \times 2 = 4$

- (a) Give examples of two functions f and g on \mathbb{R} such that f is continuous at every point of \mathbb{R} and g is not continuous at any point of \mathbb{R} .
- (b) Give an example of a function $f:[0, 1] \to \mathbb{R}$ that is discontinuous at every point of [0, 1] but such that |f| is continuous on [0, 1].

J23/228

(Turn Over)

J23/228

(4)

(c) Let $F: \mathbb{R} \to \mathbb{R}$ be a function defined by $F(x) := \begin{cases} 5, & \text{for } x = 0 \\ x \sin\left(\frac{5}{x}\right), & \text{for } x \neq 0 \end{cases}$

Show that F is not continuous at x = 0.

Answer either Q.No. 5. or 6.:

- **5.** (a) Let $A \subseteq \mathbb{R}$, let f and g be functions on A to \mathbb{R} . Suppose that $c \in A$ and that f and g are continuous at c. Prove that f + g and fg are continuous at c.
 - (b) Let I:=[a,b] be a closed bounded interval and let $f:I\to\mathbb{R}$ be continuous on I. Prove that f has an absolute maximum and an absolute minimum on I.
- **6.** (a) Let I = [a, b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. If $k \in \mathbb{R}$ is any number satisfying

 $\inf f(I) \le k \le \sup f(I)$

then prove that there exists a number $c \in I$ such that f(c) = k.

(b) Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I. Prove that the set f(I) is an interval.

(Continued)

5

5

5

(5)

UNIT-III

- 7. Answer any two of the following questions: 2×2=4
 - (a) If $f: I \to R$ has a derivative at $c \in I$, then prove that f is continuous at c.
 - (b) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at c and that f(c) = 0. Show that g(x) = |f(x)| is differentiable at c if f'(c) = 0.
 - (c) Prove that $e^x \ge 1 + x$ for $x \in \mathbb{R}$.

Answer either Q.No. 8. or 9. :

8. (a) Let $I \subseteq R$ be an interval, let $c \in I$ and let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be functions that are differentiable at c. Prove that the functions αf and f+g are differentiable at c and

 $(\alpha f)'(c) = \alpha f'(c)$ and (f+g)'(c) = f'(c) + g'(c)where $\alpha \in \mathbb{R}$.

5

(b) State and prove Caratheodory's theorem.

J23/228 (Turn Over)

J23/228

9. (a)	Suppose that f is continuous on a
	closed interval $I = [a, b]$ and that f has a
	derivative in the open interval (a, b).
Delling.	Then prove that there exists at least one point c in (a, b) such that
	point on (a, b) such that

f(b) - f(a) = f'(c)(b-a)

State and prove Darboux's theorem. regime that if k=k is differentiable

UNIT—IV

10. Answer any two of the following questions: $2 \times 2 = 4$

- Show that the function f(x) =uniformly continuous on the set $A = [a, \infty)$, where a is a positive constant.
- If f is uniformly continuous on $A \subseteq R$ and $|f(x)| \ge k > 0$ for all $x \in A$, show that $\frac{1}{2}$ is uniformly continuous on A.
- (c) Define Lipschitz function and give an example.

Answer either Q.No. 11. or 12. :

(a) Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then prove that f is uniformly continuous on I.

J23/228 (Continued)

- Show that if f is continuous on [0, so) and uniformly continuous on [a, ∞), for some positive constant a, then f is uniformly continuous on [0, ∞).
- Show that the function $f:(0, 1) \to \mathbb{R}$ given by

 $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

is uniformly continuous.

(b) If $f: A \to R$ is a Lipschitz function, then prove that f is uniformly continuous on A. Give an example with justification that a uniformly continuous function may not be a Lipschitz function. 3+2=5

Unit-V

13. Answer any two of the following questions:

5

- Define a convex function and give an example.
- Show that

$$\frac{v-u}{1+v^2} < \tan^{-1} v - \tan^{-1} u < \frac{v-u}{1+u^2}$$

if 0 < u < v.

Expand $\sin x$ in ascending powers of x.

J23/228

(Turn Over)

(8)

Answer either Q.No. 14. or 15.:

- 14. (a) State and prove Taylor's theorem with the Lagrange's form of remainder.
 - (b) Show that

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
for $-1 < x \le 1$.

LR. (a) Minny that the

- 15. (a) State and prove Cauchy's mean value theorem. 5
 - (b) Prove or disprove: For every differentiable function $f: \mathbb{R} \to \mathbb{R}$ and for every $x_0 \in \mathbb{R}$ there exist $a, b \in \mathbb{R}$ with $a < x_0 < b$ such that

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$
 5

 $\star\star\star$

out and been profedered newsper a worked. In

13. Animorang the olive febring questions:

2022/TDC/ODD/SEM/ 00/228 MTMHCC-301T/325