

2019/TDC/ODD/SEM/MTMHCC-301T/175

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(3rd Semester)

Course No.: MTMHCC-301T

(Theory of Real Functions)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any two of the following questions:

 $2 \times 2 = 4$

- (a) If Lt f(x) = l, then prove that

 Lt |f(x)| = |l|
- (b) Prove that

$$\underset{x\to 1}{\operatorname{Lt}} x^{\frac{1}{1-x}} = \frac{1}{e}$$

(c) State sequential criterion for limits.

20J/1208

(Turn Over)

3

4

3

2. Answer either [(a) and (b)] or [(c) and (d)]:

(a) If

$$\lim_{x \to 0} \frac{x^a \sin^b x}{\sin x^c}$$

where $a, b, c \in R - \{0\}$ exist and has non-zero values, then show that a+b=c

(i) If $f(x) \le g(x) \le h(x)$ in a certain neighbourhood of the point c and

$$\operatorname{Lt}_{x\to c} f(x) = l = \operatorname{Lt}_{x\to c} h(x)$$

then prove that

$$Lt g(x) = l$$

- (ii) Prove that the limit of a function, if it exists, is unique.
- (c) If

Lt f(x) and Lt g(x)

exist finitely, then prove that

$$\underset{x \to a}{\text{Lt}} \{ f(x) \cdot g(x) \} = \underset{x \to a}{\text{Lt}} f(x) \cdot \underset{x \to a}{\text{Lt}} g(x)$$

(d) (i) Evaluate:

$$Lt_{x \to \frac{1}{2} +} x \left[\frac{1}{x} \right]$$

 $Lt_{x \to \frac{1}{3}+} x \left[\frac{1}{x} \right]$

(Continued)

(ii) Using definition of limit, show that

for
$$\frac{1}{x} = 0$$
 and $\frac{1}{x} = 0$ and $\frac{1}{x$

3

UNIT-II

Answer any two of the following questions:

theorem

- Give an example of a bounded function which is discontinuous at every point of its domain.
- (b) What must be the value of f(0) so that $f(x) = (x+1)^{\cot x}$ becomes in continuous at x = 0?
- (c) Define the following terms:
 - (i) Removable discontinuity
 - (ii) Discontinuity of first kind
- 4. Answer either [(a) and (b)] or [(c) and (d)]:
 - Prove that a function f defined on an interval I is continuous at a point c in Iif and only if for any sequence $\langle c_n \rangle$ in Iconverging to c the sequence $\langle f(c_n) \rangle$ converging to f(c), i.e.,

$$c_n \to c \Rightarrow \langle f(c_n) \rangle \to f(c)$$

as $n \to \infty$

(Turn Over)

5

20J/1208

20J/1208

5

4

3

(4)

(5)

- (b) Show that the function guist (ii) f(x) = |x| + |x-1| + |x-2|is continuous at points x = 0, 1, 2.
- State and prove intermediate value theorem.
- (i) Show that the function f defined

 $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$

indi os () is discontinuous at every point.

score (ii) Show that the function f defined as f(x) = x - [x], where [x] denotes the integral part of x is discontinuous for all integral values of x.

iii Disconbill—TINUmst kind

(i) Removable discontinuity

- 5. Answer any two of the following:
 - State Rolle's theorem.
 - State Darboux's theorem. (b)
 - Let f and g be two functions with the same domain D. Give an example to show that if fg is derivable at $C \in D$, then f and g are not necessarily so at C.

- 6. Answer either [(a) and (b)] or [(c) and (d)]:
 - State and prove Carathéodory's theorem.
 - Show that the function f(x) = x|x|(b) is derivable at origin.
 - (ii) Suppose f and g are continuous in [a, b] and differentiable on (a, b). If $f'(x) = g'(x) \ \forall x \in (a, b)$, then prove that there exists a constant K such that f = g + k on [a, b], i.e., f and gdiffer by a constant on [a, b].
 - (c) A function f is defined on R as follows:

$$f(x) = \begin{cases} \frac{x(e^{\frac{1}{x}} - e^{-\frac{1}{x}})}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}, & x \neq 0 \end{cases}$$

Find Lf'(0) and Rf'(0). Is f derivable at x = 0

f(d) = f(i) If a function f(i) is derivable at a arrange point c and $f(c) \neq 0$, then show that function $\frac{1}{f}$ is also derivable at c and me enominate simple f in the following distribution f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and the enomination f is also derivable at c and f is also derivable at f is all f is also derivable at f in f is also derivable at f in f is also derivable at f in f in f in f in f is also derivable at f in f i

$$\left(\frac{1}{f}\right)(c) = \frac{-f'(c)}{\{f(c)\}^2}$$
 3

20J/1208 (Continued)

20J/1208

(Turn Over)

3

(6)

(ii) Prove that, if we will write nowen!

$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_n-1}{2+a_n} = 0$$

where $a_0, a_1, \dots, a_{n-1}, a_n$ are real numbers, then the equation

$$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$$

has at least one real root between

VI-TINU a by i.e. f and g

- 7. Answer any two of the following:
- 2×2=4

3

- (a) Define uniform continuity of a function in a domain.
- (b) Prove that $f(x) = \sin x$ is uniformly continuous on R.
- (c) Define Lipschitz's function.
- 8. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Prove that a function which is continuous in a closed and bounded interval [a, b] is uniformly continuous in [a, b].
 - (b) If $f: A \to R$ is uniformly continuous on a subset A on R and if $\langle x_n \rangle$ is a Cauchy sequence in A, then prove that $\langle f(x_n) \rangle$ is a Cauchy sequence in R.

20J/1208

(Continued)

5

(7)

(c) (i) Show that the function

$$f(x) = x^2 \ \forall \ x \in R$$

is uniformly continuous on [-1, 1] to but not in R. 2001 has works

- (ii) If $f: A \to R$ is a Lipschitz function, then f is uniformly continuous on A.
- (d) Show that the function f defined as

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is not uniformly continuous on [0, ∞).

UNIT-V

- 9. Answer any two of the following:
 - (a) State Maclaurin's theorem with Lagrange's form of remainder.
 - (b) State Cauchy's mean value theorem.
 - (c) Suppose f is continuous on [a, b] and differentiable on (a, b),

 $f'(x) = 0 \ \forall x \in (a, b)$

then show that f is constant on [a, b].

20J/1208 OHMTM

(Turn Over)

3

3

 $2 \times 2 = 4$

(8)

- 10. Answer either [(a) and (b)] or [(c) and (d)]:
 - (a) Using Cauchy's mean value theorem for the functions $f(x) = e^x$ and $g(x) = e^{-x}$ show that there exists a point c in (a, b) such that c is the arithmetic mean between a and b.
 - (b) State and prove Taylor's theorem with Lagrange's form of remainder.
 - (c) If f'' is continuous at x = a, then show that

Lt
$$_{h\to 0}$$
 $\left[\frac{f(a+h)-2f(a)+f(a-h)}{h^2}\right] = f''(a)$ 4

5

5

(d) (i) Using Taylor theorem, show that

$$x - \frac{x^6}{6} < \sin x < x, \text{ for } x > 0$$

(ii) Explain why \sqrt{x} and $x^{5/2}$ cannot be expanded in Maclaurin's infinite series.

* * *

then show that I is constant of [a, b].