2023/TDC(CBCS)/ODD/SEM/ MTMHCC-301T/305

TDC (CBCS) Odd Semester Exam., 2023

MATHEMATICS

(Honours)

(3rd Semester)

Course No.: MTMHCC-301T

(Theory of Real Functions)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

All the notations and terminologies have their usual meanings

SECTION—A PROBLEM

Answer ten questions, selecting any two from each
Unit: 2×10=20

UNIT-I

- 1. Let $\phi \neq A \subseteq \mathbb{R}$ and let c be a cluster point of A. Define the right-hand limit and the left-hand limit of f at c.
- 2. Let $f(x) := \operatorname{sgn}(x) \ \forall x \in \mathbb{R} \setminus \{0\}$. Does the limit $\lim_{x \to 0} f(x)$ exist? Justify.

(Turn Over)

3. Show that

$$\lim_{x\to 0}\frac{1}{x^2}=\infty$$

UNIT-II

4. Using ε - δ definition of continuity, check if the function

$$f(x) := \begin{cases} 1, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$$

is continuous at 0.

5. Using ε - δ definition, define discontinuity of a function

$$f:A(\subset \mathbb{R})\to \mathbb{R}$$

at some point $x_0 \in A$.

6. Prove or disprove :

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ both are discontinuous at $x_0 \in \mathbb{R}$, then $f+g: \mathbb{R} \to \mathbb{R}$ given by

$$(f+g)(x) := f(x)+g(x) \quad \forall \ x \in \mathbb{R}$$

is also discontinuous at x_0 .

7. Show that a function $f: \mathbb{R} \to \mathbb{R}$ discontinuous at 0 cannot be uniformly continuous.

- 8. Show that every Lipschitz's continuous function is uniformly continuous.
- 9. Is $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) := \sin x \ \forall \ x \in \mathbb{R}$$

uniformly continuous? Justify.

UNIT-IV

10. Is every continuous function

$$f:[2,\infty)\to\mathbb{R}$$

differentiable? Justify.

- State Caratheodory's theorem on differentiablity.
- 12. Let $f:(0,1)\to\mathbb{R}$ be such that

$$f(x) \neq 0 \ \forall \ x \in (0, 1)$$

Show that f is one-one.

UNIT-V

- 13. State Taylor's theorem with Lagrange's form of remainder.
- Deduce Lagrange's mean value theorem from Cauchy's mean value theorem.
- 15. Define a convex function $f: \mathbb{R} \to \mathbb{R}$

24J/305

(Turn Over)

SECTION-B

Answer five questions, selecting one from each Unit: 10×5=50

UNIT-I

- 16. (a) Let $A(\neq \phi) \subseteq \mathbb{R}$ and c be a cluster point of A and let $f: A \to \mathbb{R}$. Show that the following statements are equivalent:
 - (i) $\lim_{x\to c} f(x) = L$
 - (ii) Given any $\varepsilon > 0$, there exists $\delta > 0$ such that if $x \neq c$ is any point in

$$(c-\delta, c+\delta)\cap A$$

then $f(x) \in (L-\varepsilon, L+\varepsilon)$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by setting

$$f(x) := \begin{cases} x, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Show that $\lim_{x\to c} f(x)$ exists if and only if c=0.

17. (a) Let $(\phi \neq) A \subseteq \mathbb{R}$, let $f, g, h : A \to \mathbb{R}$ and let c be a cluster point of A. Show that if $f(x) \leq g(x) \leq h(x) \ \forall \ x \in A, \ x \neq c$ and if $\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x)$, then

$$\lim_{x \to c} g(x) = L$$

(b) Prove that $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$ does not exist, whereas

$$\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0$$

UNIT-II

18. (a) Show that a function

$$f:A(\subset \mathbb{R})\to \mathbb{R}$$

is continuous at $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

(b) Let I := [a, b] and let $f : I \to \mathbb{R}$ and $g : I \to \mathbb{R}$ be continuous functions on I. Show that the set

$$E := \{x \in I : f(x) = g(x)\}$$

has the property that if $(x_n) \subseteq E$ and $x_n \to x_0$, then $x_0 \in E$.

19. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and let $\beta \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) < \beta$, then there exists $\delta > 0$ such that

$$f(x) < \beta \ \forall \ x \in (x_0 - \delta, \ x_0 + \delta)$$
 5

40

5

5

Give an example, with justification, of a function $f: \mathbb{R} \to \mathbb{R}$ such that f is discontinuous at every point of R, but If is continuous on R.

UNIT-III

20. (a) Let I, J be intervals in \mathbb{R} , let $q: I \to \mathbb{R}$ and $f: J \to \mathbb{R}$ be functions such that $f(J) \subseteq I$, and let $c \in J$. If f is differentiable at c and if q is differentiable at f(c); then show that the composite function $g \circ f$ is differentiable at c and

 $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$

State and prove Darboux's theorem on differentiable functions.

State Lagrange's mean value theorem. 21. (a) Use the theorem to show that

$$|\sin x - \sin y| \le |x - y| \ \forall \ x, y \in \mathbb{R}$$
 1+2=3

Let $q: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) := \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Then show that-

(i)
$$g'(0) = 1$$

(ii) given any $\delta > 0$ there exist $x_1, x_2 \in (-\delta, \delta)$ such that

$$g'(x_1) g'(x_2) < 0$$
 2+2

24J/305

Continued)

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f'(x) = 0 for all $x \in \mathbb{R}$. Show that f is a constant function.

UNIT-IV

Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) := x^2 \ \forall \ x \in \mathbb{R}$

> Using ε - δ definition, show that f is not uniformly continuous.

Show that every continuous function

 $f:[0,1]\to\mathbb{R}$

is uniformly continuous.

3

Check uniform continuity of $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) := \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Show that $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is uniformly and only continuous sequences $(x_n)\subseteq A, \quad (y_n)\subseteq A,$ $|x_n-y_n| \rightarrow 0$ implies $|f(x_n)-f(y_n)| \rightarrow 0$.

UNIT-V

State and prove Taylor's theorem with Cauchy's form of remainder. 1+4=5

24J/305

(Turn Over)

5

- (b) Find the Maclaurin's series expansion for cos x and show that it converges to cos x.
 25. (a) Let I be an interval, let x₀ be an interior point of I, and let n≥2. Suppose that the derivatives f', f", ..., f⁽ⁿ⁾ exist and are continuous in a neighbourhood of x₀ and that f'(x₀) = ... = f⁽ⁿ⁾⁻¹⁾(x₀), but f⁽ⁿ⁾(x₀) ≠0. Show that
 - (i) if n is even and $f^{(n)}(x_0) > 0$, then f has a relative minimum at x_0 ;

5

6

- (ii) if n is even and $f^{(n)}(x_0) < 0$, then f has a relative maximum at x_0 ;
- (iii) if n is odd, then f does not have relative maximum or relative minimum.

(b) Show that for x > 0

$$1 + \frac{1}{2}x - \frac{1}{8}x^3 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$$

* * *

Stan and prove Toylor's theorem.