

2023/TDC(CBCS)/EVEN/SEM/ MTMHCC-202T/029

TDC (CBCS) Even Semester Exam., 2023

MATHEMATICS

(Honours)

(2nd Semester)

Course No.: MTMHCC-202T

(Differential Equations)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-A

Answer any ten of the following questions: $2 \times 10 = 20$

1. Write the degree and order of the following differential equations:

(i)
$$k\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$$

(ii)
$$dy = (x + \sin x) dx$$

2)

- Obtain a differential equation satisfied by the family of concentric circles.
- 3. Prove that $\sin 2x$ and $\cos 2x$ are solutions of y' + 4y = 0 and these solutions are linearly independent.
- Determine the necessary condition for a differential equation of first order and first degree to be exact.
- 5. Find the integrating factor of

$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$

6. Solve:

$$x^2 \left(\frac{dy}{dx}\right) + xy = \sqrt{1 - x^2 y^2}$$

- 7. What do you mean by simple compartmental model?
- Formulate the differential equation for exponential decay model.
- 9. Write two assumptions for limited growth with harvesting model.
- 10. Solve :

$$\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{zxy - 2x^2}$$

J23/535

(Continued)

, ,

11. Show that $(2x + y^2 + 2xz)dx + 2xydy + x^2dz = 0$

is integrable.

12. Solve :

 $zydx = zxdy + y^2dz$

13. Find the PI of $(D^2 - 3D + 2)y = \cosh x$; $D = \frac{d}{dx}$

14. Solve :

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x$$

15. Find PI of $(D^2 + a^2)y = \sin ax$.

SECTION-B

Answer any five of the following questions: 6×5=30

16. (a) Find the differential equation of all circles of radius a

$$(x-h)^2 + (y-k)^2 = a^2$$
 3

(b) Prove that the functions 1, x, x^2 are linearly independent. Hence form the differential equation whose solutions are 1, x, x^2 .

J23/535

(Turn Over)

3

- Form the differential equation of the curves $xy = ae^x + be^{-x} + x^2$
 - Show that $y = 2\sin x + 3\cos x$ is an explicit solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$, for all real x.
- Find 18. Define integrating factor. integrating factor of the differential equation $(xy\sin xy + \cos xy)ydx + (xy\sin xy - \cos xy)xdy = 0$ and hence solve it. 1+1+4=6
- 19. (a) Solve: 3 $(1-x^2)\left(\frac{dy}{dx}\right) + 2xy = x\sqrt{1-x^2}$
 - (b) Solve:

$$x\left(\frac{dy}{dx}\right) + y\log y = xye^{x}$$

- 20. Discuss the simple compartmental model.
- Let in a lake the pollution level is 7%. If the concentration of the incoming water is 2% and 10000 litres of water per day is allowed to enter the lake, find the time when pollution level is 5% and volume of the lake is 200000 litres. Also, find pollution level after 32 days.

J23/535

(Continued)

22. (a) Solve:
$$xdx + ydy - \sqrt{(a^2 - x^2 - y^2)} dz = 0$$

Solve: (b) $\frac{dx}{dt} - 7x + y = 0, \quad \frac{dy}{dt} - 2x - 5y = 0$

23. (a) Solve:

$$yz \log z dx - zx \log z dy + xy dz = 0$$

- (b) Solve $\frac{dx}{dt} = -\omega y$ and $\frac{dy}{dt} = \omega x$. Also, show that the point (x, y) lies on a circle.
- (a) Solve: 3 $\frac{d^3y}{dx^3} - y = (e^x + 1)^2$
 - (b) Solve the equation $\frac{d^2y}{dx^2} = a + bx + cx^2$, given that $\frac{dy}{dx} = 0$ when x = 0 and y = d when x = 0.

J23/535

(Turn Over)

3

3

(6)

25. (a) Solve:

2

$$\frac{d^2y}{dx^2} + \frac{1}{x} \cdot \frac{dy}{dx} = \frac{12 \log x}{x^2}$$

(b) Use the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$

* * *