2020/TDC(CBCS)/ODD/SEM/ MTMHCC-102T/325

(d) Show Hust

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

(b) Expand sin unituascondingspowers of a

MATHEMATICS

(1st Semester)

to Course No. : MTMHCC-102T

(Higher Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions: $2 \times 10 = 20$
 - (a) Apply De Moivre's theorem to prove that
 - (i) $\cos 2x = \cos^2 x \sin^2 x$
 - (ii) $\sin 2x = 2\sin x \cos x$

Amae/ado/leogo(324).deog WIMNOC TOTT/326

- (b) Expand $\sin^3 x$ in ascending powers of x. The (CEOS) Odd Samuster Wagni, 2010
- (c) Show that i^i is purely real.
- (d) Show that
- Check if the relation R on \mathbb{Z} defined by $(a, b) \in R$ iff |a-b| = 0 or 5 is an equivalence relation.
- If $f: X \to Y$ and $g: Y \to Z$ such that $g \circ f: X \to Z$ is onto, then show that g is onto.
- Check if $f: \mathbb{R} \{1\} \to \mathbb{R}$ defined $f(x) = \frac{x+1}{x-1} \ \forall x \in \mathbb{R} - \{1\}$ is invertible.
- Show that the set of odd natural (h) numbers is countably infinite.
- Find the quotient and remainder in the division of -315 by 4 and in the division of 315 by -4.
- Prove or disprove if a/b+c, then either a/b or a/c.
- Find the remainder when 3²⁰²¹ divided by 8.

- Prove Euclid's lemma: If a/bc with gcd(a, b) = 1, then a/c
- (m) Find the maximum number of +ve roots of the equation

$$x^3 - 2x^2 + 3x + 7 = 0$$

- If the sum of two roots of the equation $x^3 + px^2 + qx + r = 0$ is zero, find the third root.
- (o) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of
- (p) Write down the equation whose roots are reciprocal of the roots of the equation $2x^3 + 3x^2 + 4x + 5 = 0$.
- What do you mean by canonical form of (q)matrices?
- Define rank of a matrix.
- Prove that every singleton set containing non-zero vector is LI.
- Show that the set $\{(1,0,0), (0,1,0), (0,0,1), (1,1,1), \}$ is not LI.

10-21/182

10-21/182

(Continued)

(Turn Over)

SECTION—B

Answer any five questions

- 2. (a) State De Moivre's theorem and prove it for positive integral index.
 - (b) If $x = \frac{2}{1!} \frac{4}{1!} + \frac{6}{1!} \frac{8}{1!} + \cdots \text{ to } \infty$ and $y = 1 + \frac{2}{1!} \frac{2^3}{13} + \frac{2^5}{15} \cdots \text{ to } \infty$

then show that $x^2 = y$.

- (c) Show that $\log(x+iy) = \frac{1}{2}\log(x^2+y^2) + i(2n\pi + \tan^{-1} y/x)$ 3
- 3. (a) If $x = \cos \theta + i \sin \theta$ and $1 + \sqrt{1 a^2} = na$, then prove that

$$1 + a\cos\theta = \frac{a}{2n}(1 + nx)(1 + \frac{n}{x}).$$

- (b) Express $(\alpha + i\beta)^{p+iq}$ in the form of $A + i\beta$.
- (c) If $x < (\sqrt{2} 1)$, then prove that $2(x x^3 / 3 + x^5 / 5 \cdots) = \frac{2x}{1 x^2} \frac{1}{3} \left(\frac{2x}{1 x^2}\right)^3 + \frac{1}{5} \left(\frac{2x}{1 x^2}\right)^5 \cdots$

10-21/182

(Continued)

- 4. (a) Show that the relation R on \mathbb{Z} defined by $(a, b) \in R$ iff 7/a-b is an equivalence relation on \mathbb{Z} . What are the distinct equivalence classes in \mathbb{Z} under this relation?
 - (b) Show that $f: x \to y$ is invertible iff \exists a function $g: y \to x$ such that $g \circ f = I_X$ and $f \circ g = I_Y$, where I_X and I_Y are the identity functions on X and Y respectively.
- **5.** (a) Give example, with justification, of a relation that is symmetric, transitive but not reflexive.
 - (b) If $f: X \to Y$ is invertible, show that $(f^{-1})^{-1} = f$.
 - (c) Show that the set of rational numbers is countable.
- 6. (a) State and prove division algorithm. 5
 - (b) Using mathematical induction, prove that $24/2 \cdot 7^n + 3 \cdot 5^n 5$.
- 7. (a) Use Euclidean algorithm to obtain integers x and y satisfying

$$gcd (1769, 2378) = 1769 x + 2378 y$$

(Turn Over)

2

3

5

5

3

10-21/182

2

- (b) Find all primes which are of the form (a, h) = N ; If , if wh is an I all nithered
- (c) Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, show that—
 - (i) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac = bd \pmod{n}$;
- (ii) if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any + ve integer k. $2\frac{1}{2} + 2\frac{1}{2} = 5$
- identity functions on V and V 8. (a) Show that the equation sympages

$$x^9 + 5x^8 - x^3 + 7x + 2 = 0$$

has at least four imaginary roots.

(b) If the roots of

$$x^{3} + 3px^{2} + 3qx + r = 0$$

are in HP, prove that $2q^3 = r(3pq - r)$.

- (c) Solve the equation $x^3 12x + 65 = 0$ by Cardan's method. State and prove division algorithm
- **9.** (a) Solve the equation $x^3 7x^2 + 36 = 0$; given that one root is double of another.
 - (b) If α , β , γ , δ are the roots of $x^4 + px^3 + qx^2 + rx + s = 0$, find $\sum \alpha^2 \beta \gamma$ in terms of p, q, r, s

(c) If α , β , γ are roots of the equation $x^3 - px^2 + qx - r = 0$ then find the are $\beta \gamma + \frac{1}{\alpha}, \gamma \alpha + \frac{1}{\beta}, \alpha \beta + \frac{1}{\gamma}.$

10. (a) Show that the rank of the transpose of a matrix is the same as that of the original matrix.

Reduce the following matrix to normal

5

5

5

Find the rank of the matrix

$$\begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

(b) Solve the following system of equations by Gaussian elimination method:

$$x+2y+3z=10$$
$$2x-3y+z=1$$
$$3x+y-2z=9$$

2020/TDC(CBCS)/ODD/SEM/ MTMHCC-102T/325 10-21-390/182

(Continued)

3

10-21/182