2020/TDC(CBCS)/ODD/SEM/ MTMHCC-102T/325 (d) Show Hust TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021 (b) Expand sin unituascondingspowers of a #### **MATHEMATICS** (1st Semester) to Course No. : MTMHCC-102T (Higher Algebra) Full Marks: 70 Pass Marks: 28 Time: 3 hours The figures in the margin indicate full marks for the questions ## SECTION—A - 1. Answer any ten of the following questions: $2 \times 10 = 20$ - (a) Apply De Moivre's theorem to prove that - (i) $\cos 2x = \cos^2 x \sin^2 x$ - (ii) $\sin 2x = 2\sin x \cos x$ ## Amae/ado/leogo(324).deog WIMNOC TOTT/326 - (b) Expand $\sin^3 x$ in ascending powers of x. The (CEOS) Odd Samuster Wagni, 2010 - (c) Show that i^i is purely real. - (d) Show that - Check if the relation R on \mathbb{Z} defined by $(a, b) \in R$ iff |a-b| = 0 or 5 is an equivalence relation. - If $f: X \to Y$ and $g: Y \to Z$ such that $g \circ f: X \to Z$ is onto, then show that g is onto. - Check if $f: \mathbb{R} \{1\} \to \mathbb{R}$ defined $f(x) = \frac{x+1}{x-1} \ \forall x \in \mathbb{R} - \{1\}$ is invertible. - Show that the set of odd natural (h) numbers is countably infinite. - Find the quotient and remainder in the division of -315 by 4 and in the division of 315 by -4. - Prove or disprove if a/b+c, then either a/b or a/c. - Find the remainder when 3²⁰²¹ divided by 8. - Prove Euclid's lemma: If a/bc with gcd(a, b) = 1, then a/c - (m) Find the maximum number of +ve roots of the equation $$x^3 - 2x^2 + 3x + 7 = 0$$ - If the sum of two roots of the equation $x^3 + px^2 + qx + r = 0$ is zero, find the third root. - (o) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of - (p) Write down the equation whose roots are reciprocal of the roots of the equation $2x^3 + 3x^2 + 4x + 5 = 0$. - What do you mean by canonical form of (q)matrices? - Define rank of a matrix. - Prove that every singleton set containing non-zero vector is LI. - Show that the set $\{(1,0,0), (0,1,0), (0,0,1), (1,1,1), \}$ is not LI. 10-21/182 10-21/182 (Continued) (Turn Over) #### SECTION—B ## Answer any five questions - 2. (a) State De Moivre's theorem and prove it for positive integral index. - (b) If $x = \frac{2}{1!} \frac{4}{1!} + \frac{6}{1!} \frac{8}{1!} + \cdots \text{ to } \infty$ and $y = 1 + \frac{2}{1!} \frac{2^3}{13} + \frac{2^5}{15} \cdots \text{ to } \infty$ then show that $x^2 = y$. - (c) Show that $\log(x+iy) = \frac{1}{2}\log(x^2+y^2) + i(2n\pi + \tan^{-1} y/x)$ 3 - 3. (a) If $x = \cos \theta + i \sin \theta$ and $1 + \sqrt{1 a^2} = na$, then prove that $$1 + a\cos\theta = \frac{a}{2n}(1 + nx)(1 + \frac{n}{x}).$$ - (b) Express $(\alpha + i\beta)^{p+iq}$ in the form of $A + i\beta$. - (c) If $x < (\sqrt{2} 1)$, then prove that $2(x x^3 / 3 + x^5 / 5 \cdots) = \frac{2x}{1 x^2} \frac{1}{3} \left(\frac{2x}{1 x^2}\right)^3 + \frac{1}{5} \left(\frac{2x}{1 x^2}\right)^5 \cdots$ 10-21/182 (Continued) - 4. (a) Show that the relation R on \mathbb{Z} defined by $(a, b) \in R$ iff 7/a-b is an equivalence relation on \mathbb{Z} . What are the distinct equivalence classes in \mathbb{Z} under this relation? - (b) Show that $f: x \to y$ is invertible iff \exists a function $g: y \to x$ such that $g \circ f = I_X$ and $f \circ g = I_Y$, where I_X and I_Y are the identity functions on X and Y respectively. - **5.** (a) Give example, with justification, of a relation that is symmetric, transitive but not reflexive. - (b) If $f: X \to Y$ is invertible, show that $(f^{-1})^{-1} = f$. - (c) Show that the set of rational numbers is countable. - 6. (a) State and prove division algorithm. 5 - (b) Using mathematical induction, prove that $24/2 \cdot 7^n + 3 \cdot 5^n 5$. - 7. (a) Use Euclidean algorithm to obtain integers x and y satisfying $$gcd (1769, 2378) = 1769 x + 2378 y$$ (Turn Over) 2 3 5 5 3 10-21/182 2 - (b) Find all primes which are of the form (a, h) = N ; If , if wh is an I all nithered - (c) Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, show that— - (i) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac = bd \pmod{n}$; - (ii) if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any + ve integer k. $2\frac{1}{2} + 2\frac{1}{2} = 5$ - identity functions on V and V 8. (a) Show that the equation sympages $$x^9 + 5x^8 - x^3 + 7x + 2 = 0$$ has at least four imaginary roots. (b) If the roots of $$x^{3} + 3px^{2} + 3qx + r = 0$$ are in HP, prove that $2q^3 = r(3pq - r)$. - (c) Solve the equation $x^3 12x + 65 = 0$ by Cardan's method. State and prove division algorithm - **9.** (a) Solve the equation $x^3 7x^2 + 36 = 0$; given that one root is double of another. - (b) If α , β , γ , δ are the roots of $x^4 + px^3 + qx^2 + rx + s = 0$, find $\sum \alpha^2 \beta \gamma$ in terms of p, q, r, s (c) If α , β , γ are roots of the equation $x^3 - px^2 + qx - r = 0$ then find the are $\beta \gamma + \frac{1}{\alpha}, \gamma \alpha + \frac{1}{\beta}, \alpha \beta + \frac{1}{\gamma}.$ **10.** (a) Show that the rank of the transpose of a matrix is the same as that of the original matrix. Reduce the following matrix to normal 5 5 5 Find the rank of the matrix $$\begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$ (b) Solve the following system of equations by Gaussian elimination method: $$x+2y+3z=10$$ $$2x-3y+z=1$$ $$3x+y-2z=9$$ *** 2020/TDC(CBCS)/ODD/SEM/ MTMHCC-102T/325 10-21-390/182 (Continued) 3 10-21/182