

2020/TDC (CBCS)/ODD/SEM/ MTMHCC-101T/324

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS STEERING (3)

(1st Semester)

Course No.: MTMHCC-101T

(Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions: $2\times10=20$
 - (a) Find y_n , if $y = \sin^2 x$.
 - (b) If $y = x^{n-1} \log x$, then prove that $y_n = \frac{(n-1)!}{x}$
 - (c) State Leibnitz rule on successive differentiation.

MTMHCC-101T/324

(d) If $y = (x + \sqrt{1 + x^2})^m$, then prove that $(1 + x^2)y_2 + xy_1 - m^2y = 0$

(e) Evaluate : $\underbrace{\text{Lt.}}_{x \to 0} \underbrace{\text{sec } x = 1}_{x \text{ sec } x} \text{ (e.)}$

(f) Find the value of $\operatorname{Lt}_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \tan x$

(g) Find the asymptote parallel to coordinate axes of the curve $4x^2 + 9y^2 = x^2y^2$

(h) Show that the curve $y = x^3$ has a point of inflection at x = 0.

(i) Obtain a reduction formula for $\int \sin^n x \, dx$

(j) If $= \frac{\sec^{n-2} x \tan x}{n-1} + \left(\frac{n-2}{n-1}\right) I_{n-2}$

then find the value of $\int \sec^7 x \, dx$.

10-21/181 (Continued)

(k) HeIf is to contain a notice out being (a subset here) $I_n = \int_0^{\pi/4} \tan^n x \, dx = \frac{1}{n-1} I_{n-2}^{n-2}$

then evaluate

emistrant and t varies. Ohen show I

(1) Find the value of $\int_0^{\pi/2} \cos^{10} x dx$.

(m) Find by integration the length of y = 5x from x = 0 to x = 5.

(n) Find the length of the perimeter of the scircle $x^2 + y^2 = a^2$.

(o) Show that the length of the arc of the curve $y = \log \sec x$ between x = 0 and $x = \frac{\pi}{6}$ is $\frac{1}{2} \log 3$.

(p) The circle $x^2 + y^2 = a^2$ revolves round the X-axis. Find the surface generated.

(q) Find the value of p so that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + p\hat{j} + 5\hat{k}$ are coplanar.

(r) Prove that $\vec{a} \times (\vec{b} \times \vec{a}) = (\vec{a} \times \vec{b}) \times \vec{a}$.

(Turn Over)

10-21/181

- (s) Find the vector equation of a sphere whose centre is $\vec{c} = 2\hat{i} \hat{j} + \hat{k}$ and radius 5 units.
- (t) If $\vec{r} = (\cos nt)\hat{i} + (\sin nt)\hat{j}$, where *n* is a constant and *t* varies, then show that $\vec{r} \times \frac{d\vec{r}}{dt} = n\hat{k}$

SECTION—B

Answer any five questions

- 2. (a) If $ax^2 + 2hxy + by^2 = 1$, then show that $y_2 = \frac{h^2 ab}{(hx + by)^3}$
 - (b) If $f(x) = \tan x$, then prove that $f^{n}(0) {}^{n}C_{2} f^{n-2}(0)$ $+ {}^{n}C_{4} f^{n-4}(0) ... = \sin\left(\frac{n\pi}{2}\right)^{4}$
- 3. (a) If $y^3 + 3ax^2 + x^3 = 0$, then show that $y^5y_2 + 2a^2x^2 = 0$
 - (b) If $y = (\sin^{-1} x)^2$, then show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$ 3

10-21/181 (Continued)

Lt $\frac{\sin 2x + a \sin x}{x \to 0}$

be finite, then find the value of a and the limit.

(b) Evaluate:

 $\underset{x \to e}{\text{Lt}} \left(\log x \right)^{\frac{1}{1 - \log x}}$

5. (a) Obtain the asymptote of the curve

 $x^3 + y^3 = 6x^2$

3

3

3

- (b) Find the range of values of x for which $y = x^4 6x^3 + 12x^2 + 5x + 7$ is concave upwards or downwards. Find also its point of inflection, if any.
- **6.** (a) If $I_{m,n} = \int \sin^m x \cos^n x \, dx$, then prove that

$$I_{m,n} = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \left(\frac{n-1}{m+n}\right) I_{m,n-2}$$

(b) If $I_n = \int_0^{\pi/2} \sin^n x \, dx$, then show that

$$I_n = \left(\frac{n-1}{n}\right) I_{n-2} \text{ and find}$$

Hence or otherwise find $\int_0^{\pi/2} \sin^6 x \, dx$.

10-21/181 (Turn Over)

Obtain a reduction formula for $\int \cos^m x \cos nx \, dx$

connecting with $I_{m-1, n-1}$. Hence find the value of

 $\int \cos^2 x \cos 3x \, dx$

If (b) $I_n = \int_0^{\pi/4} \tan^n x \, dx$

then show that $n(I_{n-1} + I_{n+1}) = 1$.

Find the whole length of the loop of the curve $3ay^2 = x(x-a)^2$. If body

Show that the surface area of the solid generated by revolving the arc of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ from $\theta = 0$ to $\theta = \pi/2$ about X-axis is $\frac{6}{5}\pi a^2$.

Show that the upper half of the curve $r = a(1 - \cos \theta)$ is bisected by $\theta = \frac{2\pi}{3}$. Show also that the perimeter of the curve is 8a.

Find the surface of the solid formed by revolving the curve $r = a(1 + \cos \theta)$ about the initial line. servatie to acuti

10-21/181

(Continued)

3

3

10. (a) Show that the necessary and sufficient conditions that the three non-zero, noncollinear vectors \vec{a} , \vec{b} , \vec{c} are coplanar in their scalar triple product must vanish.

> If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and $\lambda = [\vec{a} \ \vec{b} \ \vec{c}]$, then show that for any vector \overrightarrow{d}

 $\lambda \overrightarrow{d} = (\overrightarrow{c} \cdot \overrightarrow{d})(\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{a} \cdot \overrightarrow{d})(\overrightarrow{b} \times \overrightarrow{c})$ $+(\vec{b}\cdot\vec{d})(\vec{c}\times\vec{a})$ 3

3

3

given that

 $[\vec{a} \times \vec{b} \quad \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}] = [\vec{a} \quad \vec{b} \quad \vec{c}]^2$

Find the vector equation of a plane 11. (a) passing through two given points and parallel to a given vector.

> Prove that the necessary and sufficient conditions for a vector $\vec{r} = \vec{f}(t)$ to have a constant magnitude is

$$\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$$

2020/TDC (CBCS)/ODD/SEM/ MTMHCC-101T/324

10-21-390/181