

2018/TDC/ODD/MTMC-101T/068

TDC (CBCS) Odd Semester Exam., 2018

MATHEMATICS

(1st Semester)

Course No.: MTMHCC-101T

(Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

Answer any two of the following:

 $2 \times 2 = 4$

- (a) If $y = \log(x + a)$, then find y_n .
- (b) If $y = e^{ax} \sin bx$, then show that $y_2 2ay_1 + (a^2 + b^2)y = 0$
- (c) State Leibnitz rule on successive differentiation.

1093

http://www.elearninginfo.in 3)

- 2. Answer either (a) and (b) or (c) and (d):
 - (a) If $y = \sin mx$, then show that

$$\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix} = 0$$

(b) If $y = e^{a \sin^{-1} x}$, then prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$

Hence find $(y_n)_0$.

 $x \sin \theta + y \cos \theta = a$ and $x\cos\theta - y\sin\theta = b$

then prove that

$$\frac{d^p x}{d\theta^p} \cdot \frac{d^q y}{d\theta^q} - \frac{d^q x}{d\theta^q} \cdot \frac{d^p y}{d\theta^p}$$

is constant.

Prove that

$$\frac{d^n}{dx^n}(x^n\sin x) = n!(P\sin x + Q\cos x)$$

where $P = 1 - \left(\frac{n}{2}\right) \frac{x^2}{2} + \left(\frac{n}{4}\right) \frac{x^4}{4!} - \cdots$

$$Q = \left(\frac{n}{1}\right)x - \left(\frac{n}{3}\right)\frac{x^3}{3!} + \left(\frac{n}{5}\right)\frac{x^5}{5!} - \dots$$

Unit—II

3. Answer any two of the following:

 $2 \times 2 = 4$

- Show that $\lim_{x \to 0+} (1+x)^{1/x} = e$.
- Define asymptote of a curve.
- Using the same set of rectangular axes, draw the graphs of the curves $y = \sin x$ and $y = \sin 2x$, $0 \le x \le 2\pi$.
- Answer either (a) and (b) or (c) and (d):
 - Find:

3

3

1½×2=3

- (i) Lt $\frac{(e^x 1)\tan^2 x}{r^2}$
- (ii) Lt $\left(\frac{1}{x^2} \frac{1}{\sin^2 x}\right)$
- Examine the curve $y = x^3 3x + 3$ for concavity and points of inflection, if any. Hence trace the curve showing clearly the extreme points and points of reflection, if any.
- Evaluate:

1½×2=3

- (i) Lt $(\cos x)^{\cot^2 x}$
- (ii) Lt $x \to 0$ $\frac{xe^x \log(1+x)}{x^2}$

J9/1093

(Turn Over)

(Continued)

$$y = \frac{-8}{x^2 - 4}$$
 for around x

UNIT-III

5. Answer any two of the following: $2 \times 2 = 4$

(a) If
$$I_n = \int x^n \cos ax \, dx$$

 $J_n = \int x^n \sin ax \, dx$

then show that $aI_n = x^n \sin ax - nJ_{n-1}$

(b) Evaluate $\int_0^{\pi/2} \cos^{10} \theta \, d\theta$.

J9/1093

- (c) If $I_n = \int_0^{\pi/4} \tan^n \theta \, d\theta = \frac{1}{n-1} I_{n-2}$, then find I_6 .
- 6. Answer either (a) and (b) or (c) and (d):
 - (a) From the reduction formula for $\int \cos^m x \cos nx \, dx$, obtain the value of $\int \cos^3 x \cos 5x \, dx$.
 - (b) If $I_{m,n} = \int_0^{\pi/2} \sin^m x \cos^n x \, dx$, $m, n \in \mathbb{N}$, then prove that $I_{m,n} = \frac{n-1}{m+n} I_{m,n-2}$.

(Continued)

- (c) Obtain a reduction formula for $\int \sec^n x dx$. Hence find $\int \sec^6 x dx$.
- (d) Prove that

$$\int_0^{\pi/2} \cos^n x \, dx = \frac{(n-1)(n-3)\cdots 4\cdot 2}{n(n-2)\cdots 5\cdot 3}, \text{ if } n \text{ is odd}$$

$$= \frac{(n-1)(n-3)\cdots 3\cdot 1}{n(n-2)\cdots 4\cdot 2} \frac{\pi}{2}, \text{ if } n \text{ is even} \quad 3$$

UNIT-IV

- 7. Answer any two of the following: $2\times2=4$
 - (a) Find by integration the length of y = 3x from x = 0 to x = 3.
 - (b) Find the area of the region bounded by the curve $y^2 = x$ and the line y = x.
 - (c) Show that the surface area of a sphere of radius a is $4\pi a^2$.
- 8. Answer either (a) and (b) or (c) and (d):
 - (a) Determine the length of the arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ measured from the vertex.

3

3

(b) Find the area of the smaller portion enclosed by the curves $x^2 + y^2 = 9$ and $y^2 = 8x$.

J9/1093 (Turn Over)

(6) http://www.elearninginfo.in (7

3

3

- (c) Find the length of the arc of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ lying in the 1st quadrant.
- (d) Find the area of the surface of the solid generated by revolving the arc of the parabola $y^2 = 4ax$ bounded by the latus rectum about X-axis.

UNIT-V

- **9.** Answer any two of the following: $2\times 2=4$
 - (a) Prove that $\vec{a} \times \vec{b} = \{(\hat{i} \times \vec{a}) \cdot \vec{b}\} \hat{i} + \{(\hat{j} \times \vec{a}) \cdot \vec{b}\} \hat{j} + \{(\hat{k} \times \vec{a}) \cdot \vec{b}\} \hat{k}$
 - (b) Find the vector equation of the plane through the point $2\hat{i}+3\hat{j}-\hat{k}$ and perpendicular to the vector $3\hat{i}+4\hat{j}+7\hat{k}$.
 - (c) If $\vec{r} = 5t^2\hat{i} + t\hat{j} t^3\hat{k}$ and $\vec{s} = \sin t\hat{i} \cos t\hat{j}$ then find the values of $\frac{d}{dt}(\vec{r} \cdot \vec{s})$ and $\frac{d}{dt}(\vec{r} \times \vec{s})$.

- 10. Answer either (a) and (b) or (c) and (d):
 - (a) Show that if \vec{a} , \vec{b} , \vec{c} are non-coplanar, then $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are also non-coplanar. Is this true for $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$?
 - (b) Find the vector equation of the plane passing through a given point and parallel to two given vectors.

3

3

- (c) Show that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ if and only if either $\vec{b} = \vec{0}$ or \vec{c} is collinear with \vec{a} , or \vec{b} is perpendicular to both \vec{a} and \vec{c} .
- (d) Prove that the necessary and sufficient condition for a vector $\vec{r} = \vec{f}(t)$ to have a constant direction is $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$.

J9**/1093**

(Continued)

J9—810/1093 2018/TDC/ODD/MTMC-101T/068