2023/TDC (CBCS)/EVEN/SEM/ MTMDSE-602T(A/B)/039

TDC (CBCS) Even Semester Exam., 2023

MATHEMATICS

(6th Semester)

Course No.: MTMDSE-602T

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Candidates have to answer either from Option—A or Option—B

OPTION—A

Course No.: MTMDSE-602T (A)

(Hydrodynamics)

SECTION—A

Answer any *twenty* of the following as directed: 1×20=20

1. Define ideal fluid.

interest president and

2. What do you mean by turbulent flow?

J23/815

(2-)

3.	Define	steady	flow.

- 4. Define velocity potential.
- 5. What do you mean by vorticity vector?
- 6. What does equation of continuity signify?
- Write the equation of continuity in Lagrangian form.
- 8. What is the equation of continuity of any fluid in Cartesian coordinates?
- Write the equation of continuity in spherical polar coordinates.
- Equation of continuity in cylindrical coordinates is _____.
 (Fill in the blank)
- 11. Acceleration of a fluid particle is given by $\frac{\partial \vec{q}}{\partial t}$.

 Is the statement true? If not, write the correct one.
- Write the components of acceleration of a fluid particle in cylindrical coordinates.

J23/815 (Continued)

(3)

13.	What do you mean by material derivative?
	Stream function is also known as function. (Fill in the blank)
	The state of the s
15.	Stream function exists in all types of two- dimensional motion, whether or
	(Fill in the blanks)
	- Take-in Printers To a 1988 As
16.	What does equation of motion signify?
17.	Write Euler's equation of motion in Y-direction.
18.	If $\vec{F} = X\hat{i} + Y\hat{j} + Z\hat{k}$ and $\vec{F} = -\vec{\nabla}V$, then V is said
	to be (Fill in the blank)
19.	Write the energy equation for incompressible
G:	fluid.
20.	Write Lamb's hydrodynamical equation.
21.	equation is obtained by integrating Euler's equation of motion.
	(Fill in the blank)
J23/	815 (Turn Over

- 22. Write Bernoulli's equation for unsteady, irrotational motion. of legitimal would get
- 23. According to Euler's momentum theorem, net rate of gain of momentum is __ (Fill in the blank) many or constitution of the second
- What is D'Alembert's paradox?
- 25. Given

$$\int \frac{dp}{\rho} + \frac{1}{2}q^2 + V = C$$

Is the motion steady?

SECTION—B

Answer any five of the following questions: 2×5=10

- 26. Write the difference between streamlines and path lines.
- 27. Give examples of rotational and irrotational flows.

J23/815

(Continued)

(5)

28. The equation of continuity in vector form is $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{q}) = 0$

$$\frac{\partial t}{\partial t} + \nabla \cdot (\mathbf{p} \dot{\mathbf{q}}) = 0$$

express it in the form
$$\frac{D}{Dt}(\log \rho) + \vec{\nabla} \cdot \vec{q} = 0$$

- 29. Obtain the equation of continuity in Lagrangian form.
- 30. Given the velocity field

$$\vec{q} = Ax^2y\hat{i} + By^2zt\hat{j} + Czt^2\hat{k}$$

Determine the component of acceleration in X-direction.

- 31. The velocity components of a flow is given by u = -C, v = 0. Determine the stream function.
- 32. State the law of conservation of momentum for a fluid motion and write Euler's equation of motion in Cartesian form.
- 33. Write the statement of energy equation.
- 34. State Bernoulli's theorem.
- 35. Explain Euler's momentum theorem.

J23/815

(6)

SECTION-C

Answer any five of the following questions: 8×5=40

- 36. What are the methods of describing fluid motion? Explain each of them. 2+6=8
- 37. The velocity components for a two-dimensional fluid system can be given in the Eulerian system by

$$u = 2x + 2y + 3t$$
, $v = x + y + \frac{1}{2}t$

Find the displacement of a fluid particle in the Lagrangian system.

- 38. Derive the equation of continuity of an incompressible fluid in the form $\vec{\nabla} \cdot \vec{q} = 0$, \vec{q} being the fluid velocity.
- 39. (a) If the velocity of an incompressible fluid at the point (x, y, z) is given by

$$\left(\frac{3xz}{r^5}, \frac{3yz}{r^5}, \frac{3z^2 - r^2}{r^5}\right), r^2 = x^2 + y^2 + z^2$$

prove that fluid motion is possible.

(b) A mass of fluid moves in such a way that each particle describes a circle in

(Continued)

(7)

one plane about a fixed axis. Show that the equation of continuity is

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial \theta} (\rho \omega) = 0$$

where ω is the angular velocity of a particle whose azimuthal angle is θ .

- 40. Write the relation among material, local and convective derivative and explain each term.

 Show also that the acceleration of a fluid particle is the material derivative of its velocity.

 2+6=8
- 41. (a) In spherical coordinates (r, θ, φ), the velocity components are

$$V_r = \left(\frac{r^2}{t^2}\sin\phi\right), \ V_\theta = \left(\frac{r}{t}\right)\cot\theta\csc\phi, \ V_\phi = \left(\frac{r}{t}\right)\sin\theta\cos\phi$$

Determine the components of acceleration of a fluid particle.

(b) A velocity field is given by

$$\vec{q} = -x\hat{i} + (y+t)\hat{j}$$

Find the stream function of the flow.

42. Deduce the equation of motion in the form

$$\frac{D\vec{q}}{Dt} = \vec{F} - \frac{1}{0} \vec{\nabla} p$$

J23/815

(Turn Over)

5

3

J23/815

(8)

43. Obtain the equation of motion in the form

$$\frac{\partial \vec{q}}{\partial t} + \vec{w} \times \vec{q} = \vec{F} - \frac{1}{\rho} \vec{\nabla} p - \frac{1}{2} \vec{\nabla} q^2$$

where $\vec{w} = \text{curl} \vec{q}$.

44. When velocity potential exists and forces are conservative and derivable from a potential Ω , the equation of motion can always be integrated and the solution is

a ka manadan salawan inga adawa 2000, 12

$$\int \frac{dp}{\rho} - \frac{\partial \phi}{\partial t} + \frac{1}{2}q^2 + \Omega = F(t)$$

Prove this.

45. A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional area is A, is delivered at atmospheric pressure at a place where the sectional area is B. Show that if a side tube is connected with the pipe at the former place, water will be sucked up through it into the pipe from a reservoir at a depth

$$\frac{S^2}{2g} \left(\frac{1}{A^2} - \frac{1}{B^2} \right)$$

below the pipe, S being the delivery per second.

(Continued)

(9)

OPTION_B

Course No.: MTMDSE-602T (B) (Theory of Equations)

SECTION—A SINGUESE

Answer any twenty of the following questions: 1×20=20

- 1. State fundamental theory of algebra.
- 2. State remainder theorem.
- 3. What will be the nature of the roots if the signs of the terms of an equation are all positive?
- **4.** Find the quotient and remainder when $3x^4 5x^3 + 10x^2 + 11x 61$ is divided by x 3.
- 5. Write Descarte's rule of signs for positive roots.
- 6. If α and β are the roots of the equation $x^2 2x + 3 = 0$, then find the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

J23/815

(Turn Over)

J23/815

(10)

- 7. If α , β , γ be the roots of the cubic equation $x^3 + px^2 + qx + r = 0$, then find $\Sigma \alpha^2$.
- 8. Find the equation whose roots are the reciprocals of the roots of $x^4 3x^3 + 7x^2 + 5x 2 = 0$.
- 9. If one root of $5x^2 + 13x + k = 0$ is reciprocal of the other, then find the value of k.
- 10. Find the equation whose roots are the roots of $4x^5 2x^3 + 7x 3 = 0$, when each root is increased by 2.
- Write down the standard form of a biquadratic equation.
- 12. Under what transformation the equation $ax^3 + 3bx^2 + 3cx + d = 0$ reduces to $z^3 + 3Hz + G = 0$?
- 13. If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find $\sum \frac{1}{\alpha}$.
- 14. If α , β , γ and δ be the roots of the biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, then find $\Sigma \alpha \beta$.

J23/815

(Continued)

(11)

- 15. State Newton's theorem on the sums of powers of roots.
- 16. Define superior limit of roots.
- 17. Find a superior limit of the positive roots of the equation $x^4 5x^3 + 40x^2 8x + 23 = 0$.
- 18. If all the roots of $f(x) = ax^3 + bx^2 + cx + d$ are real, then find the number of real roots of f'(x) = 0.

Appearance and the second

- 19. State Fourier and Budan theorem.
- 20. Let $f(x) = x^3 2x 5$. Find the first derived function $f_1(x)$.
- 21. State Sturm's theorem.
- 22. Find the condition that the roots of the equation $ax^2 + 2bx + c = 0$ are real and unequal.
- 23. Write the name of a method which can be used to find both the commensurable and incommensurable roots of a numerical equation.

J23/815

(12)

- 24. Write the commensurable roots of an equation $x^4 4x^3 + 8x + 4 = 0$, if exists.
- 25. What do you mean by numerical equation?

Section—B

Answer any five of the following questions: 2×5=10

The first of the second property of the second of the seco

- 26. Find the equation whose roots are -3, -1, 4, 5.
- 27. Given that the equation $x^4 6x^3 + 8x^2 17x + 10 = 0$ has a root 5, find the equation containing the remaining roots.
- 28. If $2+i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then find (p, q).
- 29. If the difference of the roots of $x^2 px + 8 = 0$ be 2, then find the value of p.
- 30. If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find $(\alpha + \beta) \cdot (\beta + \gamma) \cdot (\gamma + \alpha)$.

J23/815 (Continued)

(13)

- 31. Transform the cubic $ax^3 + 3bx^2 + 3cx + d$ into the reciprocal form.
- 32. Find a superior limit of the positive roots of the equation

$$x^5 + 3x^4 + x^3 - 8x^2 - 51x + 18 = 0$$

33. Find the number and position of the real roots of the equation

$$x^4 - 2x^3 - 7x^2 + 10x + 10 = 0$$

- 34. Find all the commensurable roots of $2x^3 31x^2 + 112x + 64 = 0$.
- 35. Find all the roots of the equation $x^4 2x^3 19x^2 + 68x 60 = 0$ which lie between -6 and 6.

SECTION—C

Answer any five of the following questions: 8×5=40

- **36.** (a) Express $3x^3 4x^2 + 5x + 6$ as a polynomial in x + 1.
 - (b) Show that the equation $x^3 + x^2 5x 1 = 0$ has one positive root in (1, 2) and two negative roots in (-1, 0) and (-3, -1).

J23/**815**

(14)

- 37. (a) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^4 + qx^2 + rx s = 0$, where q, r, s are positive.
 - (b) Show that the equation $x^3 qx + r = 0$, where q, r are positive, has one negative root, and the other two roots are either imaginary or both positive.
- 38. (a) If the roots of the equation $x^3 px^2 + qx r = 0$

be in harmonic progression, show that the mean root is $\frac{3r}{q}$.

- (b) Find the equation whose roots are the cubes of the roots of the equation $x^4 2x^3 + x^2 + 3x 1 = 0$.
- 39. (a) Solve the equation

$$6x^3 - 11x^2 + 6x - 1 = 0$$

whose roots are in harmonic progression.

(b) Let α , β , γ be the roots of the equation $x^3 + 2x^2 + 1 = 0$. Find the equation whose roots are $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$, $\gamma + \frac{1}{\gamma}$.

J23/815 (Continued)

(15)

- **40.** (a) Solve $x^3 18x 35 = 0$ by Cardan's method.
 - (b) If α , β , γ be the roots of the equation $x^3 + px + q = 0$, then find $\sum \frac{1}{\alpha + \beta}$.
- 41. Derive the complete algebraic solution of the cubic equation

$$ax^3 + 3bx^2 + 3cx + d = 0$$

- 42. (a) Apply Sturm's theorem to analyze the equation $x^4 4x^3 + 7x^2 6x 4 = 0$.
 - (b) Calculate Sturm's functions for the equation $3x^5 + 5x^3 + 2 = 0$ and show that four roots are imaginary.
- 43. Let

$$x^{n} + p_{1}x^{n-1} + p_{2}x^{n-2} + \dots + p_{n-1}x + p_{n} = 0$$

be any equation. If the first negative term be $-prx^{n-r}$ and the greatest negative coefficient be -pk, show that $\sqrt{pk} + 1$ is a superior limit of the positive roots.

44. (a) Calculate Sturm's remainders for biquadratic equation

$$z^4 + 6Hz^2 + 4Gz + a^2I - 3H^2 = 0$$

J23/815 (Turn Over)

(b) Apply Budan's method to separate the roots of the equation

🐔 kruñ suste û e ez bit i "N

$$x^4 - 16x^3 + 69x^2 - 70x - 42 = 0$$

- **45.** (a) Find the positive root of the equation $x^3 2x 5 = 0$ by using continued fraction method.
 - (b) Prove that the roots of the equation $x^3 (a^2 + b^2 + c^2)x 2abc = 0$ are all real, and solve it when two of the quantities a, b, c become equal.

salaja [han] 超点表示 "★★★☆?

the provide the self-track to be a first

ad Jugo amount in 1971 floreton in 1974

化物理性 商品 电压力 化二十二烷

with the property of the following the matter