

2022/TDC (CBCS)/EVEN/SEM/ MTMDSC/GEC-401/262

TDC (CBCS) Even Semester Exam., 2022

MATHEMATICS

(4th Semester)

Course No.: MTMDSC/GEC-401

(Abstract Algebra)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any twenty of the following questions:

1×20=20

- 1. Define group.
- 2. Give an example of a non-Abelian group.
- **3.** What is the identity element of the group $(\mathbb{Z}, *)$, where a*b = a+b+2?
- **4.** Find the inverse of a^{-1} , where a is an element of a group G.

22J/1234

(Turn Over)

VESE/WWY-\(2007(20)

- 5. Is the set of irrational numbers a group
- **6.** Write the generators of the group $(\mathbb{Z}, +)$.
- Give an example of a commutative group which is not cyclic.
- 8. Define subgroup of a group.

under addition? Justify.

- 9. What is the centre Z(G) of an Abelian group G?
- **10.** Let *G* be a cyclic group of infinite order. Find the number of elements of finite order in *G*.
- 11. Define order of an element of a group.
- 12. What is the number of elements of order 5 in the cyclic group of order 25?
- **13.** Let *H* and *K* be two subgroups of a group *G* such that *H* has 7 elements and *K* has 13 elements. What is the number of elements in *HK*?
- **14.** Let G be a group of order 25. Is there any subgroup of order 3?

(3)

- 15. Give an example to show that a left coset of a subgroup of a group is not equal to a right coset of that subgroup.
- 16. Define normal subgroup of a group.
- 17. What is the order of the quotient group $\mathbb{Z}/10\mathbb{Z}$?
- 18. Find the number of isomorphisms from the group $(\mathbb{Z}, +)$ onto the group $(\mathbb{Z}, +)$.
- **19.** Is it true that a non-commutative group may be a homomorphic image of a commutative group?
- 20. Define kernel of a homomorphism.
- 21. Define skew field.
- **22.** Give an example of an integral domain which is not a field.
- 23. Define zero divisor.
- **24.** State the condition under which any integral domain will be a field.
- **25.** Give an example of a commutative ring without identity.

22J/1234

(Continued)

22J/1234

(Turn Over)

(4)

(5)

SECTION-B

Answer any five of the following questions: $2 \times 5 = 10$

- **26.** Prove that in a group G, for all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.
- **27.** Write down the Cayley table for the group operation of the group \mathbb{Z}_5 .
- **28.** Show that union of two subgroups may not be a subgroup.
- 29. Prove that every cyclic group is Abelian.
- **30.** Find all distinct left cosets of the subgroup $7\mathbb{Z}$ in the group \mathbb{Z} .
- **31.** Give an example of a group G and a subgroup H of G, such that aH = bH, but $Ha \neq Hb$ for some $a, b \in G$.
- **32.** If $f: G \to G'$ is a homomorphism, then prove that f(e) = e', where e, e' are the identities of G and G' respectively.
- **33.** Let \mathbb{R}^+ be the group of positive real numbers under multiplication and \mathbb{R} , the group of all real numbers under addition. Prove that the map $f: \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \log x$ is a homomorphism.

34. Let R be a commutative ring. Prove that $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in R$.

35. Prove that a field is an integral domain.

SECTION-C

Answer any five of the following questions: $8\times5=40$

- **36.** (a) Prove that a finite semigroup in which cancellation laws hold is a group.
 - (b) Show that the group $GL(2, \mathbb{R})$ is non-Abelian.
- 37. (a) Let $G = \{a \in \mathbb{R} : -1 < a < 1\}$. Define a binary operation * on G by $a*b = \frac{a+b}{1+ab}$ for all $a, b \in G$. Show that (G, *) is a group.
 - (b) Write all complex roots of $x^6 = 1$. Show that they form a group under complex multiplication.
- **38.** (a) Define centre of a group. Prove that centre of a group G is a subgroup of G.

 1+3=4
 - (b) Prove that a subgroup of a cyclic group is cyclic.

22J/1234

(Continued)

22J/1234

(Turn Over)

4

(6)

(7)

39. (a)	Show that a group of finite composite order has at least one non-trivial subgroup.	4	43.	(a)	Show that every subgroup of an Abelian group is normal but the converse is not true. Justify.
(b)	Prove that order of a cyclic group is equal to the order of its generator.	4		(b)	If $f: G \to G'$ be an onto homomorphism with $K = \ker f$, then prove that $G/K \cong G'$.
40. (a)	State and prove Lagrange's theorem for finite group.	4	44.	(a)	Prove that a commutative ring R is an
(b)	Prove that in a finite group, order of each element divides the order of the				integral domain if and only if for all $a, b, c \in R \ (a \neq 0), \ ab = ac \Rightarrow b = c.$
- " <u>"</u>	group.	4		(b)	Let <i>R</i> be a commutative ring with unity. Show that—
41. (a)	Let <i>H</i> be a non-empty subset of a group <i>G</i> . Define $H^{-1} = \{h^{-1} \in G : h \in H\}$. Show		Ŷ		(i) a is a unit if and only if a^{-1} is a unit;
	that— (i) if H is a subgroup of G , then $H = H^{-1}$;				(ii) a, b are units if and only if ab is a unit.
	(ii) if H , K are subgroups of G , then $(HK)^{-1} = K^{-1}H^{-1}.$ 2+2	2=4	45.	(a)	Prove that the set $\mathbb{Z}[i] = \{a+ib a, b \in \mathbb{Z}\}$ is a ring under the usual addition and multiplication.
(b)	If H and K be two subgroups of a group G , prove that HK is a subgroup of G if and only if $HK = KH$.	4		(b)	Show that a non-zero finite integral domain is a field.
42. (a)	Show that a subgroup of index 2 in a group G is a normal subgroup of G .	4			***
(b)	If G is a group such that $G/Z(G)$ is cyclic, where $Z(G)$ is centre of G, then				· • • • • • • • • • • • • • • • • • • •
	show that G is Abelian.	4			2022/TDC (CBCS)/EVEN/SEM/
22J/1234	1 Continue	ed.)	22J-	- 750	/1234 MTMDSC/GEC-401/262