

2019/TDC/ODD/SEM/MTMDSC/ MTMGE-301T/260

TDC (CBCS) Odd Semester Exam., 2019

MATHEMATICS

(3rd Semester)

Course No.: MTMDSC/MTMGE-301T

(Real Analysis)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any four of the following: 1×4=4
 - (a) Define finite set and give an example.
 - (b) Find a lower bound of the set of positive real numbers.
 - (c) Give an example of a countable collection of finite sets whose union is not finite.

20J/1212A

(Turn Over)

(2)

http://www.elearninginfo.in (3

(d) Let

$$S = \left\{1 - \frac{(-1)^n}{n}; n \in \mathbb{N}\right\}$$

Find sup S.

- (e) Give an example of a set which is bounded below but not bounded above.
- 2. (a) Show that the greatest lower bound of a set bounded below is unique.

Or

- (b) Show that the set of all odd natural numbers is countable.
- **3.** (a) Prove that a countable union of countable sets is countable.
 - (b) State and prove Archimedean property of \mathbb{R} . 1+3=4

OR

- 4. (a) Prove that the set of rational numbers is not order complete.
 - (b) Show that the supremum of a nonempty set S of real numbers, whenever it exists, is unique.

20J/1212A

(Continued)

5

2

UNIT-II

5. Answer any four of the following:

1×4=4

2

- (a) What is the derived set of Q?
- (b) Define limit point of a subset of \mathbb{R} .
- (c) Give an example of a set which is neither closed nor open in \mathbb{R} .
- (d) Obtain the derived set of the set

$$\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$$

- (e) Give an example of an open set which is not an interval.
- **6.** (a) Obtain the derived set of the following sets:

(i) {1, 2, 3, 4, 5, 6}

(ii) {1, 2, 3, 4, ···, 500}

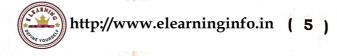
Or

- (b) Prove that the union of two open intervals is not necessarily an open interval.
- 7. (a) Prove that the intersection of any finite number of open sets is open.
 - (b) State and prove Bolzano-Weierstrass theorem. (for sets)

20J/1212A

(Turn Over)

(4)



OR

- 8. (a) Prove that a set is closed if its complement is open.
 - (b) If a sequence of closed intervals $[a_n, b_n]$ is such that each member $[a_{n+1}, b_{n+1}]$ is contained in the preceding one $[a_n, b_n]$ and $\lim(b_n a_n) = 0$, then prove that there is one and only one point common to all the intervals of the sequence.

UNIT—III

9. Answer any four of the following:

 $1 \times 4 = 4$

- (a) Show that the sequence $\{a_n\}$, where $a_n = \frac{n+1}{n}$ is convergent.
- (b) Show that the sequence $\{x_n\}$, where $x_n = n^2$ is monotonically increasing.
- (c) Define bounded sequence with example.
- (d) Give an example of two divergent sequences X and Y such that their product XY converge.
- (e) Give an example of a bounded sequence that is not a Cauchy sequence.

20J/1212A (Contin

(Continued)

10. (a) Show that every bounded sequence may not be a convergent sequence.

Or

- (b) Applying Squeeze theorem, show that $\operatorname{Lt}_{n \to \infty} \frac{\sin n}{n} = 0$
- 11. (a) Prove that every convergent sequence is bounded.
 - (b) Show that the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ cannot converge.

OR

- 12. (a) State and prove Squeeze theorem.
 - (b) Define monotone sequence. Show that the sequence

$$S_n = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \ \forall \ n \in \mathbb{N}$$

is convergent.

1+3=4

2

UNIT-IV

- **13.** Answer any four of the following: $1\times4=4$
 - (a) Give an example of a convergent series which is not absolutely convergent.
 - (b) Justify if the series $\Sigma \frac{1}{3^n}$ is convergent or divergent.

20J/1212A

(Turn Over)

http://www.elearninginfo.in

Show that the series

is not convergent.

- Can you give an example of a convergent series $\sum x_n$ and a divergent (d) series Σy_n such that $\Sigma (x_n + y_n)$ is convergent?
- Give an example of a conditional convergent series.
- Test the convergence of $\sum x_n$, where

- Prove or disprove the series Σu_n is convergent if $\lim_{n\to\infty} u_n = 0$
- Test the convergence of the following **15.** (a) 2+3=5

(i)
$$\sum (\sqrt{n^4+1} - \sqrt{n^4-1})$$

(ii)
$$\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \cdots$$

Show that the series

$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

converges absolutely for all values of x.

(Turn Over)

(Continued)

2

If $\sum u_n$ is a positive term series such that

$$\underset{n\to\infty}{\operatorname{Lt}} \frac{u_n+1}{u_n} = l$$

then the series

(i) converges, if l < 1;

(ii) diverges, if l > 1.

5

Test the convergence of the series

$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$

UNIT-V

17. Answer any four of the following:

- Write the sequential criterion for limit of a function.
- Using sequential criterion, show that Lt $\frac{1}{x \to 0} \frac{1}{x}$ does not exist.
- Give an example of a function which is not continuous at any point of R.
- Give an example of a function $f:[0,1]\to\mathbb{R}$ that is discontinuous at every point of [0, 1] but such that |f|is continuous on [0, 1].
- Define bounded function with example.

20J/1212A

20J/1212A

(8)

18. (a) For what value of a the function $f(x) = \begin{cases} x+3, & x \ge 1 \\ ax^2 + 8, & x < 1 \end{cases}$

is continuous on R?

2

Or

(b) Show that

$$\underset{x\to 0}{\operatorname{Lt}} \sin \frac{1}{x}$$

does not exist.

19. (a) Prove that a function f defined on an interval I is continuous at a point $c \in I$ if and only if for every sequence $\{c_n\}$ in I converging to c, we have Lt $f(c_n) = f(c)$.

 $\begin{array}{ccc}
e & \text{Lt} & f(c_n) = f(c). \\
& n \to \infty \\
e & \text{defined on}
\end{array}$

(b) Show that the function f defined on \mathbb{R} by

$$f(x) = \begin{cases} 1, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$$

is not continuous at any point of R.

3

4

2

5

OR

- **20.** (a) If f, g be two functions continuous at a point c, then show that the functions f+g, f_g are also continuous at c. 2+2=4
 - (b) Prove that if a function is continuous in a closed and bounded interval, then it is bounded therein.

algmass the roles ***

2019/TDC/ODD/SEM/MTMDSC/ MTMGE-301T/260