

2022/TDC/ODD/SEM/ MTMDSC/GE-101T/356

THE REAL

TDC (CBCS) Odd Semester Exam., 2022

MATHEMATICS

(1st Semester)

Course No.: MTMDSC/MTMGE-101T

(Differential Calculus)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

1. Answer any four of the following questions:

 $1 \times 4 = 4$

- (a) What is the value of $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$?
- (b) Does

$$\lim_{x \to 0} \left\{ \sin \frac{1}{x} + x \sin \frac{1}{x} + x^2 \sin \frac{1}{x} \right\}$$

exist?

(2)

2

- (c) Give an example of a function f(x) such that $\lim_{x\to 0} f(x)$ and f(0) exist and are equal.
- (d) If $\lim_{x\to 0} \frac{e^x 1}{x} = k 1$, then find k.
- (e) Does $\lim_{x\to\infty} \frac{1}{x^2}$ exist?
- 2. Answer any one of the following questions:
 - (a) State Cauchy's criterion for the existence of limit of a function.
 - (b) By using Cauchy's criterion, show that

$$\lim_{x\to 0}\sin\frac{1}{x}$$

does not exist.

Answer either Q.No. 3. or 4.:

3. (a) Using ε - δ definition of limit, evaluate

$$\lim_{x \to 0} x^2 \cos \frac{1}{x}.$$

4

(b) Find $\lim_{n\to\infty} \frac{x^n-1}{x^n+1}$.

4

J23/**99**

(Continued)

(3)

4. (a) Evaluate

 $\lim_{x\to 0} \frac{\cos - \cot x}{x}$

2

(b) Examine, if

$$\lim_{x\to 0} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$$

exists or not.

3

(c) Show that $\lim_{x\to 0} [x]$ does not exist.

UNIT-II

5. Answer any *four* of the following questions:

1×4=4

- (a) Is the function $f(x) = x^3 + 2x^2 + 1$ continuous at x = 0?
- (b) For what values of x, $f(x) = \frac{1}{x}$ is continuous?
- (c) Show that the derivative of an even function is odd.
- (d) Find $\frac{d}{dx} \{ \log (\csc x \cot x) \}$.
- (e) Is the function $f(x) = \cos \frac{1}{x}$ continuous at x = 0?

J23/99

(Turn Over)

(4)

6. Answer any one of the following questions:

- . . .
- (a) If a function f is continuous at a point x = a, then prove that |f| is also continuous at x = a.
- (b) If a function f is differentiable at a point x = a, prove that f is continuous at x = a.

Answer either Q.No. 7. or 8.:

- 7. (a) Show that the function f(x) = |x-2| is not differentiable at x = 1, though it is continuous there.
 - (b) Prove that if f(x) is continuous at x = a and $f(a) \neq 0$, then f(x) has the same sign at that of f(a) in a neighbourhood of x = a.

8. (a) Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Show that f(x) is continuous at x = 0. Also examine the differentiability of f(x) at x = 0.

(b) Let f be a function such that for all real values of x and y, f(x+y) = f(x) + f(y). If f is continuous at x = a, then prove that f is continuous for all real values of x.

J23/99 (Continued)

(5)

UNIT-III

9. Answer any *four* of the following questions: 1×4=4

a) Find y_n , if $y = x^n$.

- (b) If $y = \sin^{-1} x$, then show that $(1-x^2)y_2 xy_1 = 0$.
- (c) If $u = x \sin y + y \sin x$, find $\frac{\partial^2 u}{\partial x \partial y}$
- (d) Define a homogeneous function of degree n in two variables.
- (e) Is the function $y^2 \log \left(\frac{x}{y}\right)$ a homogeneous function? If so, find its degree.
- 10. (Answer any one of the following questions:
 - (a) Find the *n*th derivative of $x^{n-1} \log x$.
 - (b) State Euler's theorem on homogeneous function of degree n in two variables.

Answer either Q.No. 11. or 12. :

11. (a) State and prove Leibnitz's theorem on successive differentiation.

What is the confident that the two

J23/**99** (Turn Over)

(6)

(b) If $u = \tan^{-1} \left(\frac{x^3 - y^3}{x - y} \right)$

prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

12. (a) If $y = x^{2n}$, $n \in \mathbb{N}$, show that

$$y_n = 2^n \{1 \cdot 3 \cdot 5 \cdots (2n-1)\} x^n$$

(b) If $y = \sin^{-1} x$, show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

Unit—IV

13. Answer any four of the following questions:

i in and your townsuch 1×4:

- (a) What is the geometrical meaning of $\frac{dy}{dx}$ at a point?
- (b) Find the slope of the curve $y = x^2$ at the point (1, 1).
- (c) What is the condition that the two curves $\phi(x, y) = 0$ and $\psi(x, y) = 0$ cut orthogonally?

J23/99 (Continued)

(7)

- (d) Define radius of curvature at any point on a curve.
- (e) About which axis the curve $x^2 = 2y$ is symmetrical?
- 14. Answer any one of the following questions:

(a) Find the point where two tangents to the curve $y = x^3 - 3x^2 - 9x + 15$ is parallel to x-axis.

(b) Find the polar subtangent for the curve $\frac{l}{r} = 1 + e \cos \theta.$

Answer either Q.No. 15. or 16. :

15. (a) What do you mean by angle between two curves? Prove that the curves

$$\frac{x^2}{a} + \frac{y^2}{b} = 1$$
 and $\frac{x^2}{a'} + \frac{y^2}{b'} = 1$

will cut orthogonally if a - b = a' - b'.

1+3=4

(b) Find the radius of curvature at any point (s, ψ) on the curve s = 4asin ψ. Also, show that for any curve

$$\frac{1}{\rho^2} = \left(\frac{d^2x}{ds^2}\right)^2 + \left(\frac{d^2y}{ds^2}\right)^2$$
1+3=4

J23/99

(Turn Over)

4

(8)

- 16. (a) Show that at any point on the curve $x^{m+n} = k^{m-n} y^{2n}$, the mth power of the subtangent varies as the nth power of the subnormal.
 - (b) Find the radius of curvature for the curve $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ at $\theta = 0$.

UNIT-V

- 17. Answer any four of the following questions:
 - Give an example of a function whose maximum value is less than its minimum value.
 - Write down Cauchy's form of remainder in Taylor's theorem.
 - Evaluate

$$\lim_{x\to 0}\frac{x-\sin x}{x^2}$$

- State Lagrange's mean value theorem.
- Write $\cos x$ in ascending powers of x.

(Continued)

9)

18. Answer any one of the following questions:

Give the geometrical meaning of Rolle's

In the mean value theorem

$$f(a+h) = f(a) + hf'(a+\theta h)$$
 if $a = 1$, $h = 3$, $f(x) = \sqrt{x}$, find the value of θ .

Answer either Q.No. 19. or 20. :

19. (a) Evaluate

$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$

Show that the largest rectangle (in respect of area) inscribed in a circle is a square.

20. (a) Evaluate:

2+3=5

3

2

(i)
$$\lim_{x\to 1} \left(\frac{1}{x^2-1} - \frac{2}{x^4-1} \right)$$

(ii)
$$\lim_{x\to 0} (\cos x)^{\cot^2 x}$$

(b) Show that the maximum value of $x^{\frac{1}{x}}$ is $e^{\frac{1}{e}}$.

J23-630/99

2022/TDC/ODD/SEM/ MTMDSC/GE-101T/356

J23/99