

2021/TDC/CBCS/ODD/ MATHCC-501T/329

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

MATHEMATICS

(5th Semester)

Course No.: MATHCC-501T

(Topology)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: $2\times10=20$

- Define bounded metric space and give an example.
- Show that in a discrete metric space every set is open.
 - 3. Let X be a metric space and let G be an open set in X. Prove that $G \cap A = \emptyset$ if and only if $G \cap \overline{A} = \emptyset$.

(Turn Over)

http://www.elearninginfo.in

(22°2) / TDC/CBC8/0007/(22°2)

¥.	Show that every	convergent sequence in a	a
	metric space is a	Cauchy sequence.	

- Give an example of a metric space which is not complete.
- **6.** Define continuity of a function in metric space.
- 7. Define a topological space and give an example.
- 8. Define discrete and indiscrete topologies.
- Write two distinct topologies on $X = \{a, b, c\}$.
- 10. Define metrizable space.
- 11. Show with an example that the union of two topologies on a set may not be a topology.
- **12.** Define interior and exterior points of a set in a topological space.
- 13. Find the condition that a function f from topological spaces X to a topological space Y is not continuous at a point $x \in X$.
- 14. Define homeomorphism of a function in topological space.
- 15. Show that identity function is continuous.

22J/873

(Continued)

(3)

SECTION-B

Answer any five of the following questions: 10×5=50

- 16. (a) Let X be a non-empty set. Show that the function $d: X \times X \to \mathbb{R}$ is a metric on X if and only if d satisfies the conditions—
 - (i) $d(x, y) = 0 \Leftrightarrow x = y \ \forall \ x, \ y \in X$;
 - (ii) $d(x, y) \le d(x, z) + d(y, z) \ \forall \ x, y, z \in X.$ 5

5

5

5

5

- (b) If (X, d) be a metric space and A is a subset of X, then show that \overline{A} is the smallest closed set containing A.
- 17. (a) Let $S(x_0, r)$ be an open sphere in a metric space (X, d). Prove that to each $p \in S(x_0, r)$ there exists r' > 0 such that $S(p, r') \subseteq S(x_0, r)$.
 - (b) Let A be a subset of a metric space (X, d). Prove that $\overline{A} = A \cup D(A)$.
- 18. (a) If x and y are two points of a metric space (X,d) such that the sequences $< x_n >$ and $< y_n >$ in (X,d) converges to x and y respectively, then prove that the sequence $< d(x_n, y_n) >$ converges to d(x, y).

22J**/873** (Turn Over)

5

(4)

- (b) Let (X, d) and (Y, ρ) be metric spaces. Show that a function $f: X \to Y$ is continuous if and only if for every subset $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
- 19. (a) Show that R (with the usual metric) is a complete metric space.
 - (b) Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$ a mapping. If f is continuous at $x \in X$, then show that for every open set $V \subseteq Y$ containing f(x), there exists an open set $U \subseteq X$ containing x such that $f(U) \subseteq V$.

20. (a) Let N be the set of all natural numbers and T the family of subsets of N consisting ϕ and the sets of the form

 $T_n = \{n, n+1, n+2, \dots\}, n \in \mathbb{N}$

Prove that T is a topology for \mathbb{N} .

(b) Let \mathbb{R} be the set of all real numbers and T the collection of all those subsets S of \mathbb{R} such that either $S = \emptyset$ or $S \neq \emptyset$, then for each $x \in S$ there exists a right half open interval H such that $x \in H \subseteq S$. Prove that T is a topology for \mathbb{R} .

22J/873

(Continued)

5

(5)

21. (a) Show that an arbitrary intersection of closed subsets of a topological space is a closed set.

(b) Define upper limit topology on \mathbb{R} . Establish that it is a topology.

Show that the intersection of arbitrary collection of topologies on a set is also a topology.

Show that every metric space is a topological space.

- **23.** (a) Let (X, T) be a topological space and $A \subseteq X$. Show that int(A) is the largest open subset of X containing A.
 - (b) Let A and B be any two subsets of a topological space. Prove that—

(i)
$$A \subseteq B \Rightarrow D(A) \subseteq D(B)$$
;

(ii)
$$D(A \cup B) = D(A) \cup D(B)$$
.

2+3=5

5

5

5

5

Let X and Y be topological spaces. Show that a function $f: X \to Y$ is continuous iff the inverse image under f of every open set in Y is open in X.

(Turn Over)

(b) Let T_1 and T_2 denote the discrete and usual topology respectively on \mathbb{R} . Show that the function $f:(\mathbb{R}, T_1) \to (\mathbb{R}, T_2)$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{if } x \in \mathbb{R} - Q \end{cases}$$

is continuous.

- **25.** (a) Prove that $f: X \to Y$ is a homomorphism if and only if f is both continuous and open.
 - (b) Prove that a constant function from one topological space to another is continuous.

