

2021/TDC/CBCS/ODD/ MATHCC-101T/324

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

MATHEMATICS

(1st Semester)

Course No.: MATHCC-101T

(Calculus)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: $2 \times 10 = 20$

- 1. If $y = \log x$, then find y_{99} .
- 2. Find by Leibnitz's formula, the *n*th derivative of $y = x^3 \sin x$.
- 3. If $\log y = \tan^{-1} x$, then prove that $(1+x^2)y_2 + (2x-1)y_1 = 0$

(22) TEC/CECS/ODD/

- 4. State L'Hospital's rule.
- 5. Define rectangular and oblique asymptotes.
- 6. Find the vertical and horizontal asymptotes of the graph of

$$y = \frac{3x+1}{x^2-4}$$

7. Write the reduction formula for

$$\int_0^{\pi/2} \cos^n x \, dx$$

8. Evaluate:

$$\int_0^{\pi/2} \sin^6 x \, dx$$

9. Obtain the reduction formula for

$$\int \tan^n x \, dx$$

- **10.** Write the Cartesian and parametric equation of a circle with radius r and centre at (a, b).
- 11. Let $x = \phi(t)$, $y = \psi(t)$ be the parametric equations of the curve AB, t being the parameter. Write down the formula for the arc length of AB.

(3)

- 12. Find the volume generated by revolving about OX, the area bounded by $y = x^3$ between x = 0 and x = 2.
- 13. Show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ iff \vec{a} and \vec{c} are parallel.
- 14. Prove that

$$[\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}] = 2[\vec{a} \quad \vec{b} \quad \vec{c}]$$

15. If $\vec{u}(t)$ and $\vec{v}(t)$ be two differential functions of the scalar t, then show that

$$\frac{d(\overrightarrow{u}\times\overrightarrow{v})}{dt} = \overrightarrow{u}\times\frac{d\overrightarrow{v}}{dt} + \frac{d\overrightarrow{u}}{dt}\times\overrightarrow{v}$$

SECTION-B

Answer any ten of the following questions: 3×10=30

16. If $y = x^{2n}$, where *n* is positive integer, then show that—

(a)
$$y_n = 2^n \{1.3.5...(2n-1)\} x^n;$$

(b)
$$y_n = \frac{|2n|}{|n|} x^n$$
.

(4)

17. Let

$$P_n = \frac{d^n}{dx^n} (x^n \log x)$$

Prove the relation

$$P_n = n \cdot P_{n-1} + \lfloor n-1 \rfloor$$

Hence show that

$$P_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

- **18.** If $y = \sin(m\sin^{-1}x)$, then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 m^2)y_n = 0$ Also find y_n (0).
- 19. Evaluate:

$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$$

20. Find the asymptote of the curve

$$x^3 + y^3 = 3axy$$

21. Find the point of inflection, if any, of the curve

$$y = \frac{x^3}{a^2 + x^2}$$

22J/598

(Continued)

(5)

22. Find the value of

$$\int_0^{\pi/4} \tan^6 x \, dx$$

23. Obtain the reduction formula for

$$\int \sec^n x dx$$

n being a positive integer greater than 1.

24. Obtain the reduction formula for

$$\int \sin^m x \cos^n x \, dx$$

where m, n are positive integers > 1.

25. Find the whole length of the curve

$$x^{2/3} + y^{2/3} = a^{2/3}$$

- **26.** Find the length of one complete arc of the cycloid $x = a(\theta \sin \theta)$ and $y = a(1 \cos \theta)$.
- **27.** Find the area of the surface of the solid generated by revolving the arc of the parabola $y^2 = 4ax$ bounded by the latus rectum about x-axis.
- 28. Prove that

22J/598

$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

(Turn Over)

(6)

- 29. Find the parametric and non-parametric equations of the plane passing through three non-collinear points whose position vectors are \vec{a} , \vec{b} and \vec{c} .
- 30. Show that the vector equation of the sphere on the join of two given points \vec{a} and \vec{b} as diameter is

$$(\overrightarrow{r}-\overrightarrow{a})\cdot(\overrightarrow{r}-\overrightarrow{b})=0$$

