2022/TDC (CBCS)/EVEN/SEM/ MTMHCC-602T/265

qDC (CBCS) Even Semester Exam., 2022

MATHEMATICS
(Honours)
(6th Semester)
Course No. : MTMHCC-602T

(Linear Algebra)

$\frac{\text { Full Marks : } 70}{\text { Pass Marks : } 28}$
Time : 3 hours
The figures in the margin indicate full marks
for the questions
SECTION-A

Answer any ten of the following questions : $2 \times 10=20$

1. Let $V(F)$ be a vector space and 0 be the zero vector of V. Then show that
$\alpha v=0 \Rightarrow \alpha=0$ or $v=0, \forall \alpha \in F$ and $\forall v \in V$
2. Is the set

$$
\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\} \in \mathbb{R}^{3}
$$

linearly independent over \mathbb{R} ? Justify your answer.
3. Define basis of a vector space and give an example.
4. Is $T: R^{2} \rightarrow R^{3}$ defined as

$$
T(x, y)=(x+3,2 y, x+y)
$$

a linear transformation? Justify your answer.
5. State Sylvester's law of nullity.
6. The mapping $T: V_{2}(R) \rightarrow V_{3}(R)$ defined as

$$
T(a, b)=(a+b, a-b, b)
$$

is a linear transformation. Find the null space of T.
7. If $T: U \rightarrow V$ is a homomorphism, then prove that $T(0)=0^{\prime}$ where 0 and 0^{\prime} are the zero vectors of U and V respectively.
8. Define homomorphism of a vector space and give an example.

(3)

Is the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by

$$
T(x, y)=(x+2 y, 2 x+4 y) \quad \forall(x, y) \in R^{2}
$$

an isomorphism? Justify your answer.

Let T be an invertible linear operator on a finite-dimensional vector space V over a field F. Prove that $\lambda \in F$ is a characteristic root of T if and only if λ^{-1} is a characteristic root of T^{-1}.

1. Show that the eigenvalues of a diagonal matrix are its diagonal elements.
2. Prove that eigenvalues of unitary matrix are of unit modulus.
3. In an inner product space $V(F)$, prove that

$$
\|\alpha x\|=|\alpha|\|x\|
$$

14. When are two vectors said to be orthonormal in an inner product space?
15. Prove that an orthonormal set of vectors in an inner product space V is linearly independent.

(4)

SECTION -B

Answer any five of the following questions:
16. (a) Prove that union of two subspaces is a subspace if and only if one of them contains the other.
(b) Show that every linearly independent subset of a finitely generated vector space is a basis or can be extended to form a basis.
17. (a) If W_{1} and W_{2} are two subspaces of a finite-dimensional vector space $V(F)$, then prove that
$\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$
(b) If W_{1} and W_{2} be two subspaces of a vector space $V(F)$, then show that
$W_{1}+W_{2}=\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\}$ is a subspace of $V(F)$ spanned by $W_{1} \cup W_{2}$.
18. (a) If V is a vector space and $T: V \rightarrow V$ is a linear operator, then prove that the following are equivalent :
(i) Range $(T) \cap \operatorname{ker}(T)=\{0\}$
(ii) $T(T x)=0 \Rightarrow T x=0$

(5)

(b) Let T be the linear operator on R^{2} defined by $T(x, y)=(4 x-2 y, 2 x+y)$. Compute the matrix T relative to the basis $B=\{(1,1),(-1,0)\}$.
(a) Prove that there exists a linear transformation $T: R^{2} \rightarrow R^{3}$ such that

$$
T(1,1)=(1,0,2) \text { and } T(2,3)=(1,-1,4)
$$

What is $T(8,1)$?

$$
4+1=5
$$

(b) Find range, rank, kernel and nullity of the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+y, x)$.
D. (a) Prove that two finite-dimensional vector spaces over the same field are isomorphic if and only if they are of the same dimension.
(b) Prove that isomorphism is an equivalence relation.

1. (a) If $T: U \rightarrow V$ is an isomorphism of the vector space U into V, then prove that the set of vectors $\left\{T\left(u_{1}\right), T\left(u_{2}\right), \cdots, T\left(u_{r}\right)\right\}$ is linearly independent if and only if the set $\left\{u_{1}, u_{2}, \cdots, u_{r}\right\}$ is linearly independent. Give example to show that the same does not hold if T is not isomorphism.
(b) Define isomorphism of a vector space and give an example.
2. (a) Let T be a linear operator on V, where V is a vector space over a field F. If $v_{1}, v_{2}, \cdots, v_{n}$ are non-zero eigenvectors of T belonging to distinct eigen. values $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, then show that $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent.
(b) Show that eigenvalues of

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

are ± 1 and the corresponding eigen. vectors are

$$
\binom{\cos \theta / 2}{\sin \theta / 2} \text { and }\binom{\sin \theta / 2}{-\cos \theta / 2}
$$

23. (a) Let T be a linear operator on a finitedimensional vector space V. Then prove that the following are equivalent :
(i) λ is a characteristic value of T
(ii) The operator $T-\lambda I$ is singular (iii) $|T-\lambda I|=0$
(b) Prove that similar matrices have the same characteristic polynomial.
24. (a) If x, y are vectors in an inner product space V, then prove that

$$
\|x+y\| \leq\|x\|+\|y\|
$$

17)

(b) Prove that if V is an inner product space, then $|\langle x, y\rangle|=\|x\|\|y\|$ if and only if one of x or y is a multiple of the other. 5
(a) State and prove Cauchy-Schwartz inequality in an inner product space.
$1+5=6$
(b) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is an orthonormal subset of an inner product space V, then prove that for any $v \in V$, the vector

$$
v-\sum_{i=1}^{n}\left(v, v_{i}\right) v_{i}
$$

is perpendicular to each v_{i}.

