2022/TDC (CBCS)/EVEN/SEM/ MTMHCC-601T/264

DC (CBCS) Even Semester Exam., 2022
MATHEMATICS
(Honours)
(6th Semester)
Course No. : MTMHCC-601T
(Complex Analysis)
$\frac{\text { Full Marks : } 70}{\text { Pass Marks : } 28}$
Time : 3 hours
The figures in the margin indicate full marks
for the questions

SECTION-A

wer any ten of the following questions : $2 \times 10=20$
If $|z|=1$, then find the real part of

$$
\frac{z-1}{z+1}
$$

Find $\arg i(x+i y)$, if $\arg (x+i y)=\alpha$.

(2)

3. Show that for any two complex number
and $w,|z-w| z|z|=|w|$ and $w,|z-w| \geq|z|-|w|$.
4. Justify if the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined
$f(z)=\bar{z}$ is differentiable at $z=0$.
5. Check if Cauchy-Riemann equations satisfied for $f(z)=|z|^{2}$ at $z=1+i$.
6. Show that if $f(z)$ is analytic at z_{0}, then must be continuous at z_{0}. multiply connected region.
7. Evaluate $\int\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along the arc of the parabola $x=2 t, y=t^{2}+3$ joining $(0,3)$ to $(2,4)$.
8. If C is any simple closed curve, evaluate

$$
\oint_{C} z d z
$$

10. Justify if $\sin z$ is an entire function.

(3)

Gate fundamental theorem of algebra. How any roots does the equation $z^{100}-1=0$
$\mathrm{U}_{5} e^{(\varepsilon-\delta)}$ definition of limit to show that

$$
\operatorname{Lt}_{n \rightarrow \infty}\left(1+\frac{Z}{n}\right)=1
$$

for each $z \in \mathbb{C}$.

Give a brief description of Laurent series of a complex function about a singular point.

Find Laurent series for the function

$$
f(z)=\frac{z-\sin z}{z^{3}}
$$

about $z=0$.
15. Let

$$
f(z)=\frac{z}{(z-1)(z+1)^{2}}
$$

Compute the residues at all the poles of this function.

SECTION -B

Answer any five of the following questions: 10 x
16. (a) Explain the geometrical interpretation of

$$
\arg \left(\frac{z-\alpha}{z-\beta}\right)
$$

Hence find the condition for collinearity of three complex numbers z, α and β.
(b) If z_{1}, z_{2}, z_{3} are the vertices of an isosceles triangle, then show that

$$
z_{1}^{2}+2 z_{2}^{2}+z_{3}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)
$$

Hence show that

$$
\left(z_{1}+z_{3}\right)^{2}=2\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)
$$

$$
4+1=5
$$

17. (a) Determine the region of the complex plane described by $|z+1|+|z-1| \leq 4$. Illustrate the same with a diagram. $4+1=5$
(b) Define limit of a complex function at a point. Show that
if it exists, is $\operatorname{Lt}_{z \rightarrow z_{0}} f(z)$
if it exists, is unique.
prove that the function $|z|^{2}$ is continuous everywhere but nowhere Show that the function

$$
u(x, y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1
$$

satisfies Laplace equation and determine the corresponding analytic function of which it is the real part.

$$
2+3=5
$$

9. (a) If $f(z)=u(x, y)+i v(x, y)$ is analytic in $D \subseteq \mathbb{C}$, then show that u and v satisfy the Cauchy-Riemann equations in D.
(b) Derive the polar form of CauchyRiemann equations.
10. (a) Prove Cauchy-Goursat theorem for a triangle.
(b) Evaluate

$$
\oint_{C} \frac{d z}{z-3}
$$

where C is the circle $|z-2|=5$. Does the result contradict Cauchy's theorem? Justify.
21. (a) Prove Cauchy's integral formula. (b) Use Cauchy's integral formula evaluate

$$
\oint_{C}^{\sin \pi z^{2}+\cos \pi z^{2}} \frac{(z-1)(z-2)}{(z)}
$$

where C is the circle $|z|=3$.
22. (a) State and prove Liouville's theorem. (b) Prove that every polynomial equation

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0
$$

$n \geq 1$ and $a_{n} \neq 0$ has exactly n roots.
23. (a) Prove that an absolutely convergent series is convergent. Is the converse true? Justify.
(b) Prove that the series

$$
z(1-z)+z^{2}(1-z)+z^{3}(1-z)+\cdots
$$

converges for $|z|<1$ and find its sum.
24. (a) Expand $\frac{e^{z}}{z^{3}}$ and $\frac{z^{3}}{e^{z}}$ in Laurent series about $z=0$. Hence identify the types of singularities in each case.

171

Evaluate :

$$
\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta
$$

Evaluate

$$
\oint_{C}^{2+3 \sin \pi z} \frac{z(z-1)^{2}}{2} d z
$$

where C is the square
$3+3 i, 3-3 i,-3+3 i$ and $-3-3 i$. vertices
(b) Given $a>|b|$, show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

$$
\star * *
$$

