

2023/FYUG/ODD/SEM/ MATDSC-101T/140

FYUG Odd Semester Exam., 2023 (Held in 2024)

MATHEMATICS

(1st Semester)

Course No. : MATDSC-101T

(Higher Algebra and Trigonometry)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer ten questions, taking two from each Unit:

2×10=20

1. Find the general value of θ which satisfies the following equation :

 $(\cos\theta + i\sin\theta)(\cos 2\theta + i\sin 2\theta) \cdots$ $(\cos n\theta + i\sin n\theta) = 1$

OPTIVE OF THE FALL WAS

- Find all the values of $(-1)^{1/3}$.
- 3. Expand $\sin^3 x$ in ascending powers of x.

UNIT—II

MATHEMATICS

- **4.** Prove that $i^i = e^{-(4n+1)\pi/2}$.
- 5.

Show that
$$\pi = 2\sqrt{3} \left\{ 1 - \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 3^3} + \cdots \right\}$$

Express $\sin(x+iy)$ in the form of A+iB.

neares in the manner remarks full market

UNIT-III

- The relation R on \mathbb{Z} defined by $(a, b) \in R$ iff |a-b|=2023. Show that R is symmetric but not transitive.
 - 8. Let R be an equivalence relation on A. Show that for any $a, b \in A$, [a] = [b] iff $a \in [b]$, where the symbol [] represents equivalence class.
 - the negation of the statement Write $\forall \alpha \in A, \exists x \in B \text{ such that } x > \alpha.$

(3)

UNIT'-IV

- 10. If α , β and γ are the roots of the equation $x^3 3x^2 + 2x 7 = 0$, then find the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.
- 11. Find the equation whose roots are reciprocal of the roots of $x^3 6x^2 + 11x 6 = 0$.
- 12. If x+y+z=1, then prove that (1-x)(1-y)(1-z) > 8xyz

UNIT-V

- 13. What do you mean by canonical form of matrices?
- 14. Define rank of a matrix.
- 15. Show that the set {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is LI.

SECTION-B

Answer *five* questions, taking *one* from each Unit: 10×5=50

L= v cosoo o UNIT-l v tail

16. (a) State de Moivre's theorem and prove it for positive integral index.

http://www.elearninginfo.in

(4)

(b) (i) If $(1+x)^n = a_0 + a_1x + a_2x^2 + \cdots$, then prove that

$$a_0 - a_2 + a_4 - \dots = 2^{n/2} \cos^{n\pi/4}$$

3

(ii) Expand $\cos 7\theta$ in ascending powers of $\cos \theta$.

17. (a) (i) If $x = \cos \theta + i \sin \theta$ and $1 + \sqrt{1 - a^2} = na$, then prove that

$$1 + a\cos\theta = \frac{a}{2n}(1 + nx)\left(1 + \frac{n}{x}\right)$$

(ii) Expand $\sin x$ in ascending powers of x.

(b) Prove that

$$\frac{\sin^3 \theta}{\sqrt{3}} = \frac{\theta^3}{\sqrt{3}} - (1+3^2)\frac{\theta^5}{\sqrt{5}} + (1+3^2+3^4)\frac{\theta^7}{\sqrt{7}} - \cdots$$

UNIT-II

18. (a) State and prove Gregory's series.

(b) (i) If
$$\cos^{-1}(\alpha + i\beta) = x + iy$$
, then show that $\alpha^2 \operatorname{sec} h^2 y + \beta^2 \operatorname{cosec} h^2 y = 1$.

(ii) Find the sum of the series

$$\cos\theta - \frac{1}{2}\cos 2\theta + \frac{1}{3}\cos 3\theta - \frac{1}{4}\cos 4\theta + \cdots$$

24J/579

(Continued)

(5)

19. (a) (i) Prove that

$$\log(x + iy) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\frac{y}{x}$$
 3

(ii) If θ lies between 0 and $\pi/2$, then prove that

$$\tan^{-1}\left(\frac{1-\cos\theta}{1+\cos\theta}\right) = \tan^{2}\frac{\theta}{2} - \frac{1}{3}\tan^{6}\frac{\theta}{2} + \frac{1}{5}\tan^{10}\frac{\theta}{2} - \dots$$

(b) Find the sum of the series

$$\cos\theta + \frac{\csc\theta}{1}\cos 2\theta + \frac{\csc^2\theta}{2}\cos 3\theta + \cdots$$

UNIT-III

- **20.** (a) State that the relation of 'congruence modulo n' is an equivalence relation on \mathbb{Z} .
 - (b) Show that-
 - (i) $(p \land q) \Rightarrow (p \lor q)$ is a tautology;
 - (ii) $(\neg p \land q) \land (p \lor (\neg q))$ is a contradiction. 2+3=5
 - 21. (a) Show that a partition of a non-empty set induces an equivalence relation on A such that the equivalence classes are precisely the members of A. 5

24J/579

(Turn Over)

5

(6)

(b) (i) Write the following statement using quantifiers and other symbols as required:

For every positive real number ε , there exists a natural number n_0 such that the reciprocal of n_0 is less than ε .

(ii) Write the following statement as an implication:

If x is greater than 2, then x^2 is greater than 4.

Also, write its converse and contrapositive.

UNIT-IV

- **22.** (a) (i) The sum of two roots of the equation $x^3 + a_1x^2 + a_2x + a_3 = 0$ is zero. Show that $a_1a_2 = a_3$.
 - (ii) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\alpha^2}$.
 - (b) State and prove Cauchy-Schwarz inequality.

24J/579

(Continued)

2

3

3

3

23. (a) (i) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the value of $\Sigma \alpha^2 \beta$.

> (ii) Find the nature of the roots of the equation $x^3 + x^2 - 16x + 20 = 0$. 3

Solve $x^3 - 30x + 133 = 0$ by Cardan's (b) 4 method.

UNIT-V

Show that the rank of the transpose of (a) a matrix is the same as that of the original matrix.

5

5

3

Solve by Gaussian elimination method: (b)

$$x+y+z=6$$
$$2x-y+2z=6$$
$$2x+2y+z=9$$

(a) Find the rank of the matrix 25.

$$\begin{pmatrix}
2 & 2 & 0 & 6 \\
4 & 2 & 0 & 2 \\
-1 & -1 & 0 & 3 \\
1 & -2 & 1 & 2
\end{pmatrix}$$

by reducing it to normal form.

5

THE TAXABLE CONTACT

x = 0 x + y = 1 x = 0

AND THE REST (8.)

(b) (i) Prove that every singleton set containing non-zero vector is LI. 2

(ii) Show that the vectors (1, 1, 0), (1, 3, 5) and (2, 2, 0) in \mathbb{R}^3 are LD.

3

chiefmed of the Athense Solve Carden

method: Lustra Na. 1 (1977)

3-36-10-25

2023/FYUG/ODD/SEM/ MATDSC-101T/140