2019/TDC/ODD/SEM/ECOHCC-102T/062

TDC (CBCS) Odd Semester Exam., 2019

ECONOMICS

(1st Semester)

Course No.: ECOHCC-102T

(Mathematical Methods in Economics—I)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

io andiou projet Unit-I

- 1. Answer any two of the following: $2\times2=4$
 - (a) State De Morgan's law.
 - (b) Define range of a function.
 - (c) Show that $(ab)^{-1} = a^{-1}b^{-1}$ (if $a \neq 0, b \neq 0$).

(Turn Over)

260/2001-10H097 2198

2. (a) (if disal recommend the (EOR)) on

$$A = \{1, 2, 3, 4, 5\}$$

 $B = \{3, 4, 5, 6, 7\}$
 $C = \{0, 1, 8, 9\}$

find the following:

(i) A A B 191003 of section

(ii) $A \cup B$

(iii) A-B

(iv) $A \cup (B \cap C)$

(v) $(A \cup B) - C$

(vi) $A \cup B - C'$

(b) In a class of 50 students, 30 students take Economics, 25 students take Mathematics and 10 take both. Find the number of students taking neither of the two subjects.

OR

- 3. (a) Define limit of a function.
 - (b) Show that we also seems seemed

$$\lim_{x \to \infty} \frac{5x^2 + 4x^4}{5x^2 - 4x^4} = 1$$

20J/1095

(Continued)

(3.)

(c) State the conditions for continuity of a function. Determine whether the following function is continuous or not at x=2: 2+3=5

$$f(x) = x^2 - 4x + 3$$

THE GOLUNIT II) WHE WHE TOWARD

- **4.** Answer any two of the following: $2 \times 2 = 4$
 - (a) Define constant function with example.
 - (b) Give one example each of finite sequence and infinite sequence.
 - (c) Define domain and range of a function.
- Explain with diagram (a) linear function,
 (b) quadratic function, (c) exponential function, (d) polynomial function and
 (e) logarithmic function.

OR

- **6.** (a) (i) State necessary and sufficient conditions for convergency.
 - (ii) Test the convergency of the series

$$1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots$$
 2+3=5

20J/1095

(Turn Over)

(4)

(b) Formulate the model for the sum of the series, $\{1^2+3^2+5^2+7^2+9^2+\cdots+n^2\}$ and determine the sum up to the 7th term.

UNIT-III

- 7. Answer any two of the following: $2\times 2=4$
 - (a) Define differentiable function.
 - (b) Find the differential coefficients of e^{-x} and 2^x .
 - (c) Find the second-order differential coefficient w.r.t. x, when $y = 3x^3 9x$.
- 8. (a) Find $\frac{dy}{dx}$, when—

(i) $y = x^{ex}$;

(ii) $y = \frac{1}{\sqrt{5x^3 - 9x^2 + 7}}$. 3+4=7

(b) If the demand law is $x = \frac{20}{p+1}$, find e_d with respect to price at the point where p=3.

(Continued)

(5)

OR

- 9. (a) If the utility function is $u = \log(ax_1 + bx_2 + c\sqrt{x_1x_2})$, obtain the ratio of marginal utilities.
 - (b) The total cost function of a firm is $C = \frac{1}{3}x^3 5x^2 + 28x + 10$, where C is the total cost and x is the output. A tax at the rate of $\sqrt[6]{2}$ per unit of output is imposed and the producer adds it to his cost. If the demand function is given by p = 2530 5x, find the profit maximizing output and the price at the level. Also find the maximum profit.

UNIT-IV

- 10. Answer any two of the following: $2\times 2=4$
 - (a) Define convex function for a single-variable case.
 - (b) Determine whether $y = 1 + 2x x^2$ rises, falls or remains stationary at x = 1.
 - (c) Write single-variable optimization conditions for y = f(x).
- characteristics of local and global optima.

20J/1095 (Turn Over)

20J/1095

6

(6)

(b) If the total cost function is $C = \frac{1}{3}Q^3 - 3Q^2 + 9Q$, find at what level of output AC be minimum and what level it will be.

intai coat 80 notion of a firm is

- 12. (a) "For the function y = f(x), the first derivative $\frac{dy}{dx}$ refers to the absolute value of function and the second derivative $\frac{d^2y}{dx^2}$ refers to the slope of the curve." Explain the statement with graphical representation.
 - (b) Given the function $y = 10x^3 15x^2 + 10$, determine whether the function rises, falls or remains stationary at x = 2 and at x = 3.

Decemme wV-TINU - Let x2 med

13. Answer any two of the following:

2×2=4

- (a) Define definite integral.
- (b) Define first-order difference equation.
- (c) Find $\int e^{x/2} dx$.

20J/1095

(Continued)

7)

14. Find the integral of the following:

(a)
$$y = \frac{4x^7 + 3x^3 - 5x^2}{x^4}$$

(b)
$$y = \frac{6x-8}{3x^2-8x+5}$$

(c)
$$y = x \log x$$

OR

15. (a) Evaluate:

(i)
$$\int_{1}^{5} \left(x - \frac{2}{x} \right) dx$$

(ii)
$$\int x^2 e^{3x} dx$$
 3

(b) If the demand function is $P = 35 - 2x - x^2$ and the demand x_0 is 3, find the consumer's surplus.

2019/TDC/ODD/SEM/ ECOHCC-102T/062

20J-710/1095