2020/TDC (CBCS)/ODD/SEM/ ECOHCC-102T/452

depolities

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

de et militarial intermediate militari ton

ECONOMICS

(1st Semester)

Course No.: ECOHCC-102T

(Mathematical Methods in Economics—I)

Full Marks: 70

Pass Marks: 28 no local

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

- 1. Answer any ten of the following questions: $2\times10=20$
 - (a) Define continuity of a function.
 - (b) Mention the truth table for $p \wedge q$.
 - (c) Express $0.111 \cdots$ in the form of fraction.
 - (d) If $A = \{-1, 1\}$, then find $A \times A$.

2020/(12:) CBC8)/ODD/SEM/ ECONCC-1027/452

- (e) Define polynomial function with
- (f) Write the first four terms of the sequence

 $a_n = n \frac{n^2 + 5}{4}$

- (g) What is the difference between a series and a sequence?
- (h) Draw the graph of the function $y = 2x^2$ for the range -2 < x < 2.
- (i) Find the first four derivatives for the function $y = 9x^3 9$.
- (j) Obtain the differential dy when

As the start $y = 2x^2 + 3x + 5$ in the start of $y = 2x^2 + 3x + 5$

(k) Given the total cost function

$$C = 15q - 6q^2 + q^3$$

derive the equation of MC curves.

- Write single-variable optimization conditions for y = f(x).
 - (m) Why are convex functions important?
 - (n) Mention any two properties of a convex function.
 - (o) What is the local optimal solution?

10-21/250

(Continued)

((3))

(p) Find the value of x at which the function

betrager but suf(x) =
$$(x-4)^{2}$$
. To yeving

reaches, an extremum. Describe the

- (q) Define indefinite integrals.
- (r) Mention any two rules of operation for definite integral.
 - (s) Evaluate : ∫ae^{4x}d.

(t) Given the marginal propensity to

$$C'(y) = 0.7 + 0.1y^2$$

find the consumption function C(y).

SECTION-B

Answer any five questions

2. (a) If $A = \{7, 8, 9\}$, $B = \{0, 1, 8, 9\}$ and $C = \{4, 3, 7, 9\}$, then find—

(i) $A \times (B \cap C)$; to more out built was C

(ii) $(A \times B) \cap (A \times C)$;

(iii) $A \times (B \cup C)$;

(iv) $(A \times B) \cup (A \times C)$;

(v) $(A \cup B) - C$;

(vi) $(A \cup B) - C'$.

(Turn Over)

10-21/250

((4))

- (b) A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product A and 450 consumers like product B. What is the least number that must have liked both products?
- 3. (a) Mention any two rules status (3) .8. (b) Lt $\frac{\sqrt{4+x}-2}{2}$ Lt (i)
 - (ii) Lt $\frac{5+6x}{x^2}$ $\frac{5+6x}{x^2}$ iii) Lt $\frac{5+6x}{x^2}$ where the marginal property is
 - (b) Prove that the following function is continuous at x = 4: (a)

$$\inf(x) = 6 + 5x + 4x^2 + 3x^3 \iint \text{ building the state of the state of$$

4. (a) Solve:

 $\log(x) + \log(x+3) = \log(20-5x)$ anomaly and toward

- (b) Show that f(x) = 3x + 2 and $g(x) = \frac{x-2}{3}$ are inverses of each other.
- 5. (a) Find the sum of the sequence 7, 77, 777, 7777, ... to n terms
 - (b) Does the series $\sum_{n=1}^{\infty} \frac{n^{3} \times n^{3}}{n^{5} + 3^{5}}$ converge? Explain.

10-21/250

(Continued)

6

5

5

(5)

- 6. (a) Find $\frac{dy}{dx}$, when $\frac{dy}{dx}$ when $\frac{dy}{dx$
- The demand function is given by q = 7 2p

Calculate e_d , when p=1 and p=2.

7. (a) Obtain the extrema for the function

 $C = q^3 + 2q^2 - 4q + 4$ (iii) 5

(b) The total cost (C) and total revenue (R) functions of a firm are given by

 $C = 5q^2 + 10$ and $R = -2q^2 + 6q$

Find the output level (q) at which profit of the firm is maximum.

- 8. (a) Discuss the geometric properties of a linear function.
 - (b) Given the price equation, P = 100 2Q, where Q is quantity demanded. Find—
 - (i) the marginal revenue (MR);
 - (ii) the price elasticity of demand, when Q = 10;
 - (iii) the nature of the commodity.

10-21/250 TONOS

4020/TDC (CBGS)/ODD/SEM/

13

(Turn Over)

5

6

- 9. (a) Explain local and global maxima with suitable graphical representation.
- (b) Prove that a cubic function must have a point of inflexion.
- 10. Find the integral of the following: 3+3+4=10

(i)
$$\int (x+a)^3 dx$$

(ii)
$$\int_{a}^{a} \frac{(a^x + b^x)^2}{a^x \cdot b^x} dx$$

(iii)
$$\int_{0}^{1} x(1-x)^{n} dx$$

11. (a) The supply function of a firm is given by

(b) " my rear "ever being (") Jone Inial off"

$$p = q^2 + 2q + 1$$

Given that the equilibrium is reached at q = 3. Find producer surplus at the equilibrium quantity.

(b) Obtain the solution of the equation

$$y_{t+1} - 2y_t = 4$$

Given that $y_t = 4$, when t = 0.

(a). the price aloguent of demand, when

dibograms with to studies sell that.

(SM) some on the speed of the

6