2022/TDC/ODD/SEM/ECOHCC-102T/452

TDC (CBCS) Odd Semester Exam., 2022

ECONOMICS

(Honours)

(1st Semester)

Course No.: ECOHCC-102T

TOUR MEAN TORS

(Mathematical Methods in Economics—I)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any two of the following: $2\times2=4$
 - (a) Draw appropriate Venn diagrams for $(A \cup B)'$.
 - (b) Enumerate all the subsets of the set $S = \{a, b, c, d\}$.

J23/128

(Turn Over)

2)

(c) Evaluate

$$\lim_{x \to \infty} \frac{4x^2 - 9x}{5x^2 - 34}$$

2. Answer either (a) or (b):

10

(a) (i) What is logical statement? What are the characteristics of a statement?

2+3=5

- (ii) Define the implication of statements. Write the truth table for the implication of two given statements p and q. 2+3
- (b) Discuss the importance of proof techniques in economic analysis. Explain the different types of proof that are used in mathematical analysis.

4+6=10

UNIT-II

3. Answer any two of the following:

2×2=4

- (a) What type of functional form is shown by the equation of an indifference curve?
- (b) Evaluate $f(x) = 2x^2 + 5x + 9$ at x = a; x = (a-3).
- (c) Define arithmetic progression of a sequence.

J23/128

(Continued)

((3.)

4. Answer either (a) or (b):

10

(a) (i) Draw the relation graphically as given by the set $\{(x, y) | y \le x\}$. In the theory of firm economists, consider the relationship as Q: C = f(Q). According to the definition of a function, should each cost (C) figure be associated with a unique level of output? 3+2=5

(ii) If $f(x) = \frac{ax + b}{bx + a}$, prove that $f(x) \cdot f\left(\frac{1}{x}\right) = 1$.

(b) (i) For what value of K, the following series will be in arithmetic progression?

$$3k^2 + k + 1$$
, $2k^2 + k$, $4k^2 - 6k + 1$ 5

(ii) Given
$$y = f(x) = \frac{x^2 + x - 20}{x - 4}$$
. Is this

function continuous at x = 4? Why? 5

Unit—III

5. Answer any two of the following:

2×2=4

- (a) Define degree of the differential function.
- (b) Give the geometrical meaning of derivative.

J23/128

(Turn Over)

second-order differential Find the w.r.t. when coefficient $y = 6x^3 - 8x^2 + 12x - 6.$ into he said to yie all

Answer either (a) or (b):

10

5

(i) For what value of x, the following is maximum expression minimum?

$$y = 4x^3 - 15x^2 + 12x - 2$$

and Also find the maximum minimum values.

The demand function $Q_1 = 80 - 4P_1$ intersects another demand function Q_2 at P=5. If the elasticity of demand for Q_2 is one fourth as large as that of Q_1 at that point, then find Q_2 , assuming it is also linear.

A producer has the possibility of discriminating between domestic and foreign markets for a product where the demands respectively are $Q_1 = 21 - 0.1 P_1$ and $Q_2 = 50 - 0.4P_2$. Also TC = 2000 + 10Q. What price will the producer charge to maximize discrimination profits with 5 between markets?

(Continued)

(ii) A firm has the following AR and TC functions:

$$AR = 160 - Q$$

$$TC = 200 + 4Q + 7Q^{2}$$

A subsidy of ₹ 4 per unit of output is paid. Find (1) profit maximizing output, (2) maximum profit and (3) effect of subsidy on equilibrium price.

UNIT-IV

7. Answer any two of the following:

(a) Check the convexity/concavity of the following function:

$$f(x) = \frac{x^2}{2} - 0.9x + 2$$

of AC when $AC = Q^2 - 3Q + 15 + \frac{27}{2}$

Determine whether $y = 1 + 2x - x^2$ rises, falls or remains stationary at x = 1.

J23/128

5 110 5 12

(Turn Over)

J23/128

(6)

5

5

- 8. Answer either (a) or (b):
 - (i) Explain local and global maxima with suitable graphs.
 - (ii) Following are the demand functions for two commodities x and y. whether Determine commodities are competitive or complementary:

 $x = P_x^{-1.7} P_y^{0.8}$ and $y = P_x^{0.5} P_y^{-0.2}$

- (i) Explain the extrema of the function (b) $y = 2x^3 - 3x^2 + 3x + 7.$
 - (ii) A TV manufacturer produces x sets per week at a total cost of $(x^2 + 7 \cdot 8x + 2500)$. He is a monopolist and the demand function for his product is $x = \frac{9600 - P}{8}$, when the price is Pper set. Show that the maximum net revenue (i.e., profit) is obtained when 529 sets are produced per week. What is the monopoly price?

(Continued)

(7)

UNIT-

9. Answer any two of the following:

(a) $\int \sqrt{x^5} dx$

(c) $\int \left(2\sqrt{x} - \frac{8}{\sqrt{x}}\right) dx$

10. Answer either (a) or (b):

10

(i) Show that

$$\int_0^4 6x \, dx = \int_0^3 6x \, dx + \int_3^4 6x \, dx$$

(ii) Integrate $\int_0^2 \frac{3x^2}{(x^3+1)^2} dx$. 3

(iii) Given the demand function $P_d = 25 - Q^2$ and the supply function $P_s = 2Q + 1$. Assuming pure competition, find consumers' surplus and producers' surplus.

J23/128

(Turn Over)

5

J23/128

- (b) (i) Given $MC = 25 + 30Q 9Q^2$, fixed cost is 55. Find TC and AC.
 - (ii) The MPS is given as $0.5-0.2 \ Y^{-1/2}$. There is dissaving of 3.5 when income is 25. Find the saving function.
 - (iii) Solve the following difference equation and check the answer using t = 0 and t = 1:

$$x_t + 3x_{t-1} + 8 = 0$$
 and $x_0 = 16$

3

★.★.★_{EP} on align threans .Ot