

## OPTION-B

# Course No. : MTMDSE-602T (B)

# ( Theory of Equations )

SECTION-A

nswer any *twenty* of the following as directed :  $1 \times 20 = 20$ 

- 1. What is the remainder when  $3x^2 + 4x 11$  is divided by x 1?
- 2. State fundamental theorem of algebra.
- **3.** What will be the nature of the roots if the signs of the terms of an equation be all positive?
- 4. State remainder theorem.
- 5. If  $f(\alpha)$  and  $f(\beta)$  be of opposite signs, then what can you say about the number of real roots between  $\alpha$  and  $\beta$  of f(x) = 0?
- 5. Find the sum and product of the roots of the equation  $4x^3 + 7x 3 = 0$ .
- If  $\alpha$  and  $\beta$  are the roots of  $x^2 2x + 3 = 0$ , then find the equation whose roots are  $\frac{1}{\alpha}, \frac{1}{\beta}$ .

/1392

(Turn Over)

## (10)

- 8. If one root of  $5x^2 + 13x + k = 0$  is reciprocal of the other, then find the value of k.
- 9. If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the cubic equation  $x^3 + px^2 + qx + r = 0$ , then find the value of  $\Sigma \alpha^2$ .
- 10. If the sum of the roots of the equation  $\lambda x^2 + 2x + 3\lambda = 0$  be equal to their product, then find the value of  $\lambda$ .
- **11.** Name any one method to solve a cubic equation.
- 12. Write down the standard form of a biquadratic equation.
- **13.** Under what transformation the equation  $ax^3 + 3bx^2 + 3cx + d = 0$  reduces to  $Z^3 + 3HZ + G = 0$ ?
- 14. If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the equation  $x^3 + px^2 + qx + r = 0$ , then find the value of  $\Sigma \frac{1}{\alpha}$ .
- 15. If  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  be the roots of the biquadratic equation  $x^4 + px^3 + qx^2 + rx + s = 0$ , then find the value of  $\Sigma \alpha \beta$ .
- 16. If all the roots of  $f(x) = ax^3 + bx^2 + cx + d$  are real, then find the number of real roots of f'(x).

22J/1392

( Continued

| 4.  | Define superior limit of roots.<br>Find the number of imaginary roots of<br>$x^{5} + x^{4} + x^{2} - 25x - 36 = 0$ .<br>Write the condition that the roots of the<br>cubic equation $x^{3} + 3Hx + G = 0$ should be |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19. | $x^{3} + x$ the condition that the roots of the write the condition $x^{3} + 3Hx + G = 0$ should be cubic equation $x^{3} + 3Hx + G = 0$ should be                                                                  |
| 20. | real.<br>Let $f(x) = x^3 - 2x - 5$ , find its first derived<br>function $f_1(x)$ .                                                                                                                                  |
| 21. | function $f_1(x)$ .<br>Whether the equation $x^4 - 4x^3 + 8x + 4 = 0$<br>has commensurable roots?<br>Find the condition that the roots of the<br>ation $ax^2 + 2bx + c = 0$ are real and                            |
|     | unequal.                                                                                                                                                                                                            |
| 23. | unequal.<br>An equation in which the coefficient of the<br>first term is unity, and the coefficients of the<br>other terms are whole numbers, cannot have<br>a commensurable root which is not a whole              |
|     | number. (Write True or False)                                                                                                                                                                                       |
|     | with the conditions that the roots of the                                                                                                                                                                           |

- Write the conditions that the cubic equation  $Z^3 + 3HZ + G = 0$  are all real 24. and unequal.
- 25. Horner's method is applied in solving any numerical equation to find both the commensurable and incommensurable roots. (Write True or False)

(Turn Over)

2J**/1392** 

#### SECTION-B

Answer any *five* of the following questions :  $2 \times 5 = 10$ 

- **26.** Find the quotient and remainder when  $x^4 + 5x^3 + 4x^2 + 8x 20$  is divided by x 1.
- **27.** Find the equation whose roots are 2, -3, 4, -1.
- **28.** If  $2+i\sqrt{3}$  is a root of the equation  $x^2 + px + q = 0$ , where p and q are real, then find (p, q).
- **29.** If the difference of the roots of  $x^2 px + 8 = 0$  be 2, then find the value of p.
- **30.** If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the equation  $x^3 + px^2 + qx + r = 0$ , then find the value of  $(\alpha + \beta) (\beta + \gamma) (\gamma + \alpha)$ .
- **31.** State Newton's theorem on the sums of powers of roots.
- **32.** Find all the roots of the equation  $x^4 2x^3 19x^2 + 68x 60 = 0$  which lie between -6 and 6.
- **33.** Find an approximate value of the positive root of the equation  $x^3 2x 5 = 0$ .

2J/1392

(Continued)

## (13)

34. Find the integral roots of the equation  $x^4 - 2x^3 - 13x^2 + 38x - 24 = 0.$ 

**35.** Find all the commensurable roots of  $2x^3 - 31x^2 + 112x + 64 = 0$ .

SECTION-C

Answer any five of the following questions :  $8 \times 5 = 40$ 

- **36.** (a) Express  $3x^3 4x^2 + 5x + 6$  as a polynomial in x + 1.
  - (b) Prove that the equation  $x^3 + x^2 5x 1 = 0$  has one positive root lying in (1, 2) and two negative roots lying in (-1, 0) and (-3, -2).
  - **37.** (a) Apply Descarte's rule of signs to find the nature of the roots of the equation  $x^4 + qx^2 + rx s = 0$  (q, r, s being positive).
    - (b) Solve the equation  $x^4 - 3x^3 - 5x^2 + 9x - 2 = 0$ ,  $(2 - \sqrt{3})$

being one of its roots.

**38.** (a) If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the biquadratic equation  $x^4 + px^3 + qx^2 + rx + s = 0$ , then find the value of  $\Sigma \alpha^4$ .

22J/1392

(Turn Over)

4

4

4

4

- (14)
- (b) If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the equation  $x^3 + 2x^2 + 1 = 0$ , then find the equation whose roots are  $\alpha + \frac{1}{\alpha}$ ,  $\beta + \frac{1}{\beta}$ ,  $\gamma + \frac{1}{\gamma}$ .

4

4

4

5

3

( Continued )

**39.** (a) If 
$$\alpha_1, \alpha_2, \dots, \alpha_n$$
 be the roots of the equation  
 $x^n + \rho_1 x^{n-1} + \dots + \rho_{n-1} x + \rho_n = 0, \rho_n \neq 0,$   
Find the value of  $\sum \frac{\alpha_1^2 + \alpha_2^2}{\alpha_1 \alpha_2}.$  4

- (b) Find the equation whose roots are the cubes of the roots of the equation  $x^4 2x^3 + x^2 + 3x 1 = 0$ .
- **40.** (a) Solve  $x^3 18x 35 = 0$  by Cardan's method.
  - (b) Solve the equation  $x^4 2x^2 + 8x 3 = 0$ . 4
- **41.** (a) Reduce the equation

 $x^3 + 6x^2 - 12x + 32 = 0$ 

to its standard form and then solve the equation.

(b) If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the roots of the equation  $x^3 + px + q = 0$ , then find the value of  $\Sigma \frac{1}{\alpha + \beta}$ .

J/1392

## (15)

- (a) Find the number and position of the real roots of the equation  $x^4 2x^3 7x^2 + 10x + 10 = 0.$ 
  - (b) Apply Sturm's theorem to analyze the equation  $x^4 4x^3 + 7x^2 6x 4 = 0$ .
- . (a) Calculate Sturm's functions for the following equation and show that four roots are imaginary :

$$3x^5 + 5x^3 + 2 = 0$$

- (b) Prove that the roots of the equation  $x^3 (a^2 + b^2 + c^2)x 2abc = 0$  are all real and solve it when two of the quantities become equal.
- 4. (a) Find the positive root of the equation  $x^3 + x^2 + x 100 = 0$  correct to four decimal places.
  - (b) Find by Horner's method, the real positive root of the equation  $8x^3 10x^2 3x 7 = 0$  which lies between 1 and 2.
- **45.** (a) Find a root of the equation  $x^3 2x 5 = 0$ correct to two places of decimal by Newton's method of approximation.
  - (b) Find in the form of a continued fraction the positive root of the equation  $x^3 - 2x - 5 = 0.$

#### \* \* \*

2022/TDC (CBCS)/EVEN/SEM/ MTMDSE-602T (A/B)/267

22J-200/1392

4

4

4

4

4

4

4

4