
 

Course Outcomes: After successful completion of the course, the students will be able to 

1. Apply mathematical logic to solve problems. 

2. Learn the concept of sets, relations, functions and lattice. 

3. Model and solve real world problems using graphs and trees. 

 

Text Books: 

1. Seymour Lipschutz and Marc Lars Lipson, Discrete Mathematics, Fourth Edition 

Schaum’s Outline Series, McGraw Hill, 2022. 

2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, 

McGraw Hill, 2012. 

3. Swapan K Sarkar, A Textbook of Discrete Mathematics, 9th Edition, S Chand & Co 

Ltd, 2016. 

Reference Books: 

1. D.J. Hunter, Essentials of Discrete Mathematics, Jones and Bartlett Publishers, 3rd 

Edition, 2008. 

2. C.L. Liu, D.P. Mahopatra, Elements of Discrete mathematics, 2nd Edition, Tata 

McGraw Hill, 1985. 

3. Deo N., Graph Theory with Applications to Engineering and Computer Science, 

PHI; 6th edition 2010. 

 

Semester   : II 

Course Type   : DSC 

Course Code   : CSCDSC151 

Name of the Course  : Data Structure 

Learning level   : Foundation or Introductory Course 

Credits    : 3 

Contact Hours   : 45 

Total Marks   : 100 

End Semester Marks  : 70 

Internal Marks  : 30 

 

Course Objectives: 

1. Introduce the basic concepts and principles of data structures, including their 

definition, properties, and characteristics. 

2. Familiarize students with the implementation of various data structures using 

programming languages, including arrays, linked lists, stacks, queues, trees, graphs, 

and hash tables. 

3. How to analyze the time and space complexity of different data structures and 

algorithms, enabling them to make informed decisions regarding their selection and 

usage. 

4. Cover various searching and sorting algorithms, including linear search, binary 

search, bubble sort, insertion sort, selection sort, merge sort, quicksort, and their 

analysis. 



 

5. Cover the concepts of hashing, hash functions, collision resolution techniques, and 

the implementation and applications of hash tables. 

UNIT I 

Arrays: Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked 

Representation).  

Stacks: Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix 

expressions, Utility and conversion of these expressions from one to another; Applications of 

stack; Limitations of Array representation of stack.  

Recursion: Developing Recursive Definition of Simple Problems and their implementation; 

Advantages and Limitations of Recursion. 

 

UNIT II 

Linked Lists: Singly, Doubly and Circular Lists (Array and Linked representation); Normal 

and Circular representation of Stack in Lists; Self Organizing Lists; Skip Lists. Queues: 

Array and Linked representation of Queue, De-queue, Priority Queues. 

 

UNIT III 

Trees: Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion, Recursive 

and Iterative Traversals in Binary Search Trees); Threaded Binary Trees (Insertion, Deletion, 

Traversals); Height-Balanced Trees (Various operations on AVL Trees), Heap Tree. 

 

UNIT IV 

Searching and Sorting: Linear Search, Binary Search, and Comparison of Linear and Binary 

Search, Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, and Comparison 

of Sorting Techniques. 

UNIT V 

Hashing: Introduction to Hashing, Hash Table, Hash Key, Hash Function, Characteristics of 

Good Hash Functions, Types of Hash Functions, Collision, Resolving Collision by Open 

Addressing & closed Addressing: Linear probing, Quadratic probing, Double Hashing.  

 

Course outcomes: After successful completion of the course, the students will be able to 

1. Demonstrate a solid understanding of various data structures, including arrays, 

linked lists, stacks, queues, trees and hash tables. 

2. Develop proficiency in implementing data structures using programming languages, 

including creating and manipulating data structures through appropriate algorithms. 

3. Apply analytical skills to analyze the time and space complexity of algorithms 

associated with different data structures, allowing for informed decision-making in 

algorithm selection. 

4. Enhance critical thinking skills and problem analysis abilities by identifying the 

appropriate data structures and algorithms to solve given problems efficiently. 

 

 

 



 

Text Books: 

1. Seymour Lipschutz, Data Structures, Schaum’s Outline Series, TMH, 4th Edition, 2019. 

2. Adam Drozdek, Data Structures and Algorithms in C++, Cengage Learning, 3rd 

Edition, 2012. 

3. SartajSahni, Data Structures, Algorithms and Applications in C++, Universities Press, 

2nd Edition, 2011. 

 

Reference Books: 

1. D.S Malik, Data Structure using C++, Cengage Learning, Second Edition, 2010. 

2. Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, Data Structures Using 

C and C++,  PHI, 2nd Edition, 2009. 

3. Robert L. Kruse, Data Structures and Program Design in C++, Pearson, 3rd Edition, 

1999. 

 

Semester   : II 

Course Type   : DSC 

Course Code   : CSCDSC152 

Name of the Course  : Lab on Data Structure 

Learning level   : Foundation or Introductory Course 

Credits    : 3 

Contact Hours   : 90 

Total Marks   : 100 

End Semester Marks  : 70 

Internal Marks  : 30 

Course Objectives:  

1. Help students apply the theoretical concepts of data structures in a practical setting. 

It should provide exercises and programming assignments that require students to 

implement and manipulate different data structures. 

2. Enhancing students' programming skills by providing practical programming 

exercises. 

3. It should encourage students to write code, debug, and test their implementations of 

data structures and associated algorithms. 

This paper provides practical knowledge of data structure. List of laboratory programming 

assignments (not limited to these): 

 

1. Write a program to search an element from a list. Give users the option to perform 

Linear or Binary search. Use Template functions. 

2. WAP using templates to sort a list of elements. Give users the option to perform 

sorting using Insertion sort, Bubble sort or Selection sort. 

3. Implement Linked List using templates. Include functions for insertion, deletion and 

search of a number, reverse the list and concatenate two linked lists (include a 

function and also overload operator +). 

4. Implement Doubly Linked List using templates. Include functions for insertion, 

deletion and search of a number, reverse the list. 


