2023/TDC(CBCS)/ODD/SEM/ CSCHCC-501T/090

TDC (CBCS) Odd Semester Exam., 2023

COMPUTER SCIENCE

(Honours)

(5th Semester)

Course No.: CSCHCC-501T

(Theory of Computation)

Full Marks: 70

Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer ten questions, selecting any two from each
Unit:
2×10=20

UNIT-I

- Write the complement operation on languages in TOC.
- **2.** Explain the difference between the operations L^+ and L^* in the context of formal languages.

24J/106

3. Given an alphabet $\Sigma = \{x, y\}$. Find $(\Sigma \cdot \Sigma)^*$, where $\Sigma \cdot \Sigma$ represents concatenation.

UNIT-II

- 4. Explain the term 'finite automata'.
- 5. Explain the main characteristics that distinguish a deterministic finite automata from a non-deterministic one.
- 6. What is transition table in finite automata?

UNIT-III

- 7. Explain the term leftmost derivation tree.
- 8. Explain the difference between a nonterminal symbol and a terminal symbol
- 9. Consider the context-free grammar

 $G: S \rightarrow aSb \mid \varepsilon$

What is the language generated by this grammar?

UNIT-IV

10. Give the formal definition of PDA.

- Explain the role of a stack in a pushdown automata.
- Explain the concept of 'closed under homomorphism for context-free language'.

UNIT-V

- 13. Why do we need Turing machines?
- 14. Write two properties of recursive enumerable language.
- What is the significance of a universal Turing machine in the theory of computation?

SECTION-B

Answer *five* questions, selecting *one* from each Unit: 10×5=50

UNIT-I

- 16. (a) Write the applications of theory of computation.
 - (b) Explain the union and intersection on languages. Given two languages $L1 = \{a, b\}, L2 = \{b, c\}.$ Determine $L1 \cup L2$ and $L1 \cap L2$.

5

- Define the concatenation operation 17. (a) for languages. If $L1 = \{a, aa, aaa\}$ and $L2 = \{b, bb\}$, then find the result of the concatenation $L1 \cdot L2$ and $L2 \cdot L1$.
 - Explain the following terms: $1 \times 5 = 5$
 - (i) Symbol
 - (ii) Alphabet
 - (iii) String
 - (iv) Power of an alphabet
 - (v) Finite string

UNIT-II

- 18. (a) Given the alphabet $\Sigma = \{a, b\}$. Construct a transition graph for a finite automata that recognizes the language $L = \{W | W\}$ contains an even number of 'a' s}
 - Use the pumping lemma for regular languages to prove that the language

$$L=\{0^n1^n|n\geq 0\}$$

is not a regular language.

- Design DFA for the following languages: 19. (a) 2+2=4
 - (i) $L = \{(ab)^n : n \ge 0\}$ over $\Sigma = \{a, b\}$
 - (ii) $L = \{W \in \{a, b\} : W \text{ starts with } a\}$ and ends with b

(b) What is automata? In the process of NFA to DFA conversion, what is the role of E-closure? Explain with an example.

Convert the given NFA to DFA:

UNIT-III

Give the formal definition of CFG. Also design CFG for the language

$$L = \{a^n b^n : n \ge 0\}$$
 2+3=5

Explain the concept of a parse tree. Consider the context-free grammar

$$G: E \rightarrow E + E \mid E * E \mid (E) \mid id$$

Construct a parse tree for expression id + id * id.

Design a context-free grammar (CFG) 21. (a) that generates the language

24J/106

$$L = \{a^m b^n c^m \mid m, n \ge 0\}$$

Provide the production rules, start symbol and a step-by-step derivation for the string "aabccc" using your CFG.

(Turn Over)

5

What is unambiguous grammar in TOC? Check whether the given input string aabb is ambiguous or not:

5

 $S \rightarrow aSb \mid SS$ $S \rightarrow e$

UNIT-IV

Define Chomsky normal form and 22. (a) Greibach normal form for context-free grammars. Explain the benefits of these normal forms in terms of simplifying grammar structures and passing.

Construct PDA for-

(i)
$$L = \{a^n b^{2n+1}\}$$

(ii)
$$L = \{a^n b^{2n} \mid n \ge 1\}$$

- Use the pumping lemma to prove that 23. (a) the language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.
 - Design PDA for

$$L = \{0^n 1^m 2^{(n+m)} \mid m, n \ge 1\}$$

UNIT-V

recursively Differentiate between 24. (a) enumerable and recursive language. Give examples.

Construct a Turing machine which accepts the language aba over $\Sigma = \{a, b\}$.

What are undecidable problems in 25. (a) TOC? Explain.

> Discuss the notion of language acceptability and decidability in the context of Turing machines. Provide examples to illustrate each concept.

6

(Continued)

2023/TDC(CBCS)/ODD/SEM/ CSCHCC-501T/090