

2022/TDC(CBCS)/EVEN/SEM/ CSCHCC-403T/006

TDC (CBCS), Even Semester Exam., 2022

COMPUTER SCIENCE STATEMENT

Honours) on and all the

(4th Semester)

Course No.: CSCHCC-403T

(Design and Analysis of Algorithms)

Full Marks: 70
Pass Marks: 28

Locken Time: 3 hours would be tarted of

The figures in the margin indicate full marks for the questions

SECTION—A transport to be well SI

Answer any ten questions:

uestions: 2×10=20

- 1. What do you mean by best case and average case complexities of an algorithm?
- 2. Check $5n^2 6n = \theta(n^2)$.
- 3. Write down the difference between greedy method and dynamic programming.

22J/1214

(Turn Over)

CECS//EVEN/SEM/	Á	1	2022
Caunda Language			
CSCHCC-403T/006			

4.	Compare	bubble	sort	and	insertion	sort
	Compare bubble sort and insertion in terms of number of operations.					

- 5. What is ideal sorting algorithm?
- 6. What is the complexity of quick sort?
- 7. What is lower bound theorem? Is lower bound a worst case?
- 8. What is the lower bound for comparisonbased algorithms?
- 9. What are the types of balanced trees?
- 10. What is amortized analysis method?
- 11. How do you use amortized analysis algorithm?
- 12. What is meant by string matching?
- 13. What is minimum cost spanning tree? of the rep past error and extraga
- 14. What is cross-edge and back-edge in DFS tree?

" miB = mid - " pr

District and Jeneral program that

15. What is the running time of BFS? diame e coffernce br

(3)

SECTION-	B
----------	---

so to wat appears a source field with an incity. Answer any five questions:

10×5=50

10

10

- 16. Define Big 'Oh', Theta and Omega notations as used in the analysis of algorithm. Bring out the differences among them with example.
- 17. Explain divide and conquer strategy with algorithm. Also, explain the computing time for divide and conquer strategy.
- 18. Illustrate the steps of the operation of HEAPSORT on the array A = (5, 13, 2, 25, 7, 17, 20, 8, 4)Also, explain the complexity of heapsort algorithm. 7+3=10
- 19. Write an algorithm for merge sort? Show that the computing time for merge sort is $O(n \log n)$. 5+5=10
- 20. Explain, with example, how lower bound theory is used to calculate a minimum number of comparisons required to execute an algorithm.

22J/1214

(Continued

(Turn Over)

10

22J/1214

- 21. Explain red-black trees with examples.

 What is the best case complexity for the ode-c red-black tree?

 7+3=1
- 22. Explain with example amortized analysis.

 How does amortized analysis differ from average case analysis?

 7+3=10
- 23. Explain the Knuth-Morris-Pratt (KMP) algorithm for string matching. What is the matching time in KMP algorithm? 8+2=10
- 24. Write a pseudocode for breadth first search.
 Why is BFS used for shortest path? 7+3=10
- 25. Explain Kruskal's algorithm for minimum cost spanning tree. Also, mention the time complexity of Kruskal algorithm. 7+3=10

Write an algustine for marge sort? Show

01=3+5 (n gala)0

Eq. sin, with example, how lower bound decay is used to calculate a minimum the object of comparisons required to execute

algorithm.

2022/TDC(CBCS)/EVEN/SEM CSCHCC-403T/00

· The ser