

2023/TDC(CBCS)/EVEN/SEM/ CSCHCC-202T/320

TDC (CBCS) Even Semester Exam., 2023

COMPUTER SCIENCE

(Honours)

(2nd Semester)

Course No.: CSCHCC-202T

(Data Structure)

Full Marks: 50
Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten questions:

2×10=20

- 1. Define data structure. What are the objectives of studying data structure?
- 2. Define single- and multi-dimensional arrays. Give the formula to find the address of a particular location in one-dimensional array.

J23/**524**

(Turn Over)

(2)

3. Give the prefix form of the following infix expression:

$A \cdot B + C/D - E$

- 4. What are the basic operations that can be performed on stack? Why and when is stack data structure used instead of array/list?
- 5. Define doubly linked list. Give an example.
- 6. List out the applications of queue. What are the different types of queue in data structure?
- Explain the implementation of problems in developing recursion.
- 8. What is a tree data structure? Give an example.
- 9. Define (a) root, (b) degree, (c) leaves, (d) height (or depth) of a tree.
- Define 'almost complete binary tree'. Give an example.
- 11. What is the difference between selection sort and bubble sort?
- 12. Mention some real-life examples of selection sort.

(Continued)

.

(3)

13. What are the importances of hashing?

14.	Wha	at do you mean by hash table?	
15.	Defi	ne rehashing in data structure.	
		SECTION—B	ř.
Ansv	ver a	my five questions: 6×5=	30
16.	(a)	Why is sparse matrix used instead of simple matrix?	1
	(b)		3
. 5	(c)	Why are postfix/prefix expressions faster than infix?	2
17.	(a)	Write an algorithm to insert and delete an element in array.	3
	(b)	convert the following infix expression into postfix form:	3
		P = A * (B + C) + (D + E) * F / G	
18.	(a)	Explain about the use and representation of header node in linked list.	4
	(b)	Define priority queue. Give an example	. 2
19.	Writer	ite an algorithm to insert and delete an n from a circular queue using array.	
J23	/524	1 (Turn O	ver

J23/524

0.	Explain the following:	25. (a)	(a)	Mention a real-world example of		
	(a) Strictly binary tree		11.1			
	(b) Complete binary tree		(b)	What is the format of hash?		
	The the fire against a pile as	j.	(c)	What are the two types of hashing in data structure? Define.		
1.	Given the following in-order and pre-order traversals:					
	Inorder : D G B A H E I C F			***		
	Preorder: A B D G C E H I F	"i				

Write an algorithm for insertion sort. How does it work? Explain with an example.

the tree drawn.

23. Using selection sort algorithm, sort the following unsorted elements:

50, 33, 44, 22, 77, 35, 60, 40 Also write down the time complexity of selection sort algorithm.

Construct the corresponding binary

Determine the post-order traversal of

24. Explain the concept of hashing division method of hashing. Store the following values in a hash table of size:

11, 25, 45, 96, 101, 102, 162, 197, 201

(Continued)

J23—180/**524**

2023/TDC(CBCS)/EVEN/SEM/ CSCHCC-202T/320

J23/524