

2023/TDC(CBCS)/EVEN/SEM/ CSCHCC-201T/319

TDC (CBCS) Even Semester Exam., 2023

COMPUTER SCIENCE (Honours)

(2nd Semester)

Course No.: CSCHCC-201T

(Computer System Architecture)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any ten of the following questions: $2\times10=20$

- 1. What is underflow in floating-point arithmetic?
- 2. Considering memory hierarchy, define hit and miss.
- 3. State the purpose of the following registers in processor architectures:

PC, MDR, IR and MAR

4. What are the rules to perform addition on floating-point numbers?

(Turn Over)

- 5. Define processor clock.
- What is meant by an instruction cycle?
- 7. Define interrupt and interrupt service routine.
- 8. What are four types of operations performed by computer instructions?
- 9. What does memory hierarchy mean?
- What is TLB (Translation Lookaside Buffer)?
- 11. What is an addressing mode?
- Write the 2's complement of 1011011.
- 13. Design and draw the logic diagram of full-adder.
- 14. Define DMA controller.
- 15. Why are NAND and NOR gates more popular?

SECTION-B

Answer any five of the following questions:

- Implement AND gate using **16.** (a) NOR gate.
 - State the principle of duality. 2
 - 3 Realize J-K flip-flop using D flip-flop.
 - Minimize the following function using K-map:

 $F = \sum m(1, 2, 3, 5, 6, 7)$

17.	(a)	What is a prime implicant?	2
	(b)	Express $x + yz$ as the sum of minterms.	3
	(c)	Implement a full-adder with 4×1 multiplexer.	3
	(d)	How many states are there in 3-bit ring counter? What are they?	2
18.	(a)	Convert $(0.513)_{10}$ to octal, convert $(673.124)_8$ to hexa decimal.	3
	(b)	Consider a 7-bit floating-point representation with 3 bits for the excess-3 exponent and 3 bits for the mantissa.	
C	al _l at.	(i) How would 0.375(10) be representation?	
		(ii) What decimal value does 0110110 represent?	4
	(c)	Explain the various representation types of signed binary numbers.	3
19.	(a)	Perform binary addition using 1's complement for two binary numbers -0110 and -0111.	3
ř	(b)	What is floating-point representation? What are the types of floating-point representation?	4
	(c)	What is fixed-point representation of negative number?	3

2

3

J23/**523**

- inches
September 1

20.	(a)	What is Bus? Draw the single-bus structure.	3
	(b)	Draw the flow of instruction cycle.	3
	(c)	Explain instruction set architecture. Give example.	4
21.	(a)	What is memory reference instruction? Explain with example.	5
	(b)	Explain the different classes of CPU registers.	5
22.	(a)	Briefly describe the hardware organization of associative memory. Also, discuss the read and write operation for the associative memory.	5
	(b)		5
23.	(a)	Explain the significance of cache memory in computer system.	- 5
	(b)		5
24.	(a)	Explain with the block diagram the DMA transfer in a computer system.	° 5
	(b)	Explain interrupt-driven I/O technique.	5
25.	(a)	Explain various data transfer modes used in DMA.	5
	(b)	What is an I/O module? Discuss with the help of a diagram, the functioning of I/O module.	5

2023/TDC(CBCS)/EVEN/SEM/ CSCHCC-201T/319