

2021/TDC/CBCS/ODD/ CSCHCC-102T/083

TDC (CBCS) Odd Semester Exam., 2021 held in March, 2022

COMPUTER SCIENCE

(1st Semester)

Course No.: CSCHCC-102T

(Discrete Structures)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

The state Asianakti el bus riquen

Answer any ten of the following questions:

 $2 \times 10 = 20$

the lady at

- 1. Write the importance of discrete structures in computer science.
- 2. Show that $A = \{2, 3, 4, 5\}$ is a proper subset of $C = \{1, 2, 3, \dots, 9\}$.
- **3.** Define function with an example.

22J/575

(Turn Over)

\ann\sees\ann\((\$\hat{2}\)

4. Write down the characteristic of an algorithm.

5. Is $2^{2n} = O(2^N)$?

- 6. State the difference between O and Ω notations.
- 7. Define recurrence relation with an example.
- 8. Find the generating function of 1, 1, 1, 1, 1, 1.
- 9. Find the recurrence relation of the sequence $\{0, 1, 1, 2, 3, 5, \cdots\}.$
- 10. What are directed and undirected graphs?
- 11. What is the difference between Eulerian graph and Hamiltonian graph?
- 12. What do you mean by minimum cost spanning tree? Give example.
- 13. Define WFF.
- 14. What do you mean by universal and existential quantifiers?
- 15. When are two properties said to be logical

22J/575

(Continued)

(3)

SECTION—B

Answer any five of the following questions:

10×5=50

5

5

3

3

- Define equivalence relation with an **16**. (a) example. Let A be a non-zero integer and let \approx be a relation on $A \times A$ defined by $(a, b) \approx (c, d)$, where ad = bc. Prove that the given relation is an equivalence relation.
 - State pigeonhole principle. Suppose a laundry bag contains many red, white and blue T-shirts. Find the minimum number of T-shirts that one needs to choose in order to get two pairs (4 T-shirts) of same colour.
- 17. (a) Consider two functions $f: A \rightarrow B$ and $g: B \to C$. Prove that if f and g are onto, then composition function $g \circ f$ is also onto.
 - (b) Discuss the closure properties of relation.
 - Let R and S are the two relations on

 $A = \{1, 2, 3\}$ $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}$ $S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$

Find (i) $R \cap S$, (ii) S^2 and (iii) $R \cdot S$.

(Turn Over)

22J/575

(4)

18. V	What is asymptotic notation? Discuss O , Ω and θ with examples. 1+3+3+3	CY CY	22.	(a)	Explain with example depth-first search graph traversal algorithm.	7
19. (a) Write a short note on bounding summation.	5		(b)	Write short notes on (i) regular graph, (ii) weighted digraph and (iii) multigraph.	3
B1	Show that $\log n! = O(n \log N)$. Show that $3n+2=\theta(N)$.	2½ 2½	23.	(a)	Explain with algorithm to find the minimum cost spanning tree.	7
				(b)	Write down the properties of a tree.	3
20.	(a) Find the solution of the recurrence relation $a_n = (x+1)a_{n-1}$ with initial condition $a_0 = 2$.	4	24.	(a)	Verify that the proposition $PV \cap (P \wedge Q)$ is a tautology.	3
	b) State Master theorem.	2		(b)	Write the negation of each statement: 1½+1½=	-3
1	relation? What makes a recurrence relation linear?	2=4			(i) If she wants, she will earn money.(ii) He swims if and only if the water is warm if it snows, then they do not drive the car.	
21. (a) Find the solution of the recurrence relation $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with initial condition $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$.	6		(c)	Show that the following argument is a fallacy : $P \to Q, \ \ P \vdash \ \ Q$	4
ε (b) Discuss any two techniques of solving recurrence relation.	4		, , ,	Explain with examples converse, contrapositive and inverse.	3
22J /5		ued)		drive	OSCHOOL (Turn Ove	r)

(6)

(b) Test the validity of the following argument:

If two sides of a triangle are equal, then the opposite angles are equal.

Two sides of a triangle are not equal.

4

The opposite angles are not equal.

- (c) Show that the property of the continue of
 - (i) $P \wedge Q$ logically implies $P \leftrightarrow Q$;
 - (ii) $P \leftrightarrow \exists Q$ does not logically imply $P \to Q$. $1\frac{1}{2}+1\frac{1}{2}=3$

* * *

ter Write the negeties at acceptantive to

. Thomas also also make and it in

a st tremware adjusted the units where

25. Yal Esplein with examples of overse, contra-

warm it it snows, then they do not